References
- Alazmi, A., Al-Anzi, B.S. and Chiavola, A., 2023. Assessment of machine learning algorithms for predicting air entrainment rates in a confined plunging liquid jet reactor. Sustainability, 15(18), pp. 13802.
- Bagatur, T. and Baylar, A., 1998. Aeration with water jets and practical applications. DSI Technical Bulletin, 92, pp. 17-29.
- Bagatur, T., Baylar, A. and Sekerdag, N., 2002. The effect of nozzle type on air entrainment by plunging water jets. Water Quality Research Journal of Canada, 37(3), pp. 599-612.
- Baylar, A. and Emiroglu, M.E., 2003. Air entrainment and oxygen transfer in a venturi. Proceedings of the Institution of Civil Engineers - Water & Maritime Engineering, 156(WM3), pp. 249-255.
- Baylar, A. and Emiroglu, M.E., 2004. An experimental study of air entrainment and oxygen transfer at a water jet from a nozzle with air holes. Water Environment Research, 76(3), pp. 231-237.
- Baylar, A., Aydin, M.C., Unsal, M. and Ozkan, F., 2008. CFD analysis to predict optimal air inlet hole diameter of venturi tube in terms of air injection. e-Journal of New World Sciences Academy, 3(2), pp. 211-224.
- Baylar, A., Aydin, M.C., Unsal, M. and Ozkan, F., 2009. Numerical modeling of venturi flows for determining air injection rates using FLUENT V6.2. Mathematical and Computational Applications, 14(2), pp. 97-108.
- Baylar, A., Emiroglu, M.E. and Ozturk, M., 2006. The development of aeration performance with different typed nozzles in a vertical plunging water jet system. International Journal of Science and Technology, 1(1), pp. 51-63.
- Baylar, A., Ozkan, F. and Ozturk, M., 2005. Influence of venturi cone angles on jet aeration systems. Proceedings of the Institution of Civil Engineers - Water Management, 158(WM1), pp. 9-16.
- Baylar, A., Ozkan, F. and Unsal, M., 2010a. Effect of air inlet hole diameter of venturi tube on air injection rate. KSCE Journal of Civil Engineering, 14(4), pp. 489-492.
- Baylar, A., Ozkan, F. and Unsal, M., 2010b. Using venturi tubes in two-phase aeration processes. International Sustainable Water and Wastewater Management Symposium, pp. 378-386, Konya, Turkey.
- Baylar, A., Ozkan, F. and Unsal, M., 2007a. On the use of venturi tubes in aeration. CLEAN - Soil, Air, Water, 35(2), pp. 183-185.
- Baylar, A., Unsal, M. and Ozkan, F., 2007b. Determination of the optimal location of the air hole in venturi aerators. CLEAN - Soil, Air, Water, 35(3), pp. 246-249.
- Bin, A. K., 1993. Gas entrainment by plunging liquid jets. Chemical Engineering Science, 48(21), pp. 3585-3630.
- Emiroglu, M.E. and Baylar, A., 2003a. Role of nozzles with air holes in air entrainment by a water jet. Water Quality Research Journal of Canada, 38(4), pp. 785-795.
- Emiroglu, M.E. and Baylar, A., 2003b. Study of the influence of air holes along length of convergent-divergent passage of a venturi device on aeration. Journal of Hydraulic Research, 41(5), pp. 513-520.
- Evans, G. M., Jameson, G. J., and Rielly, C. D., 1996. Free jet expansion and gas entrainment characteristics of a plunging liquid jet. Experimental Thermal and Fluid Science, 12(2), pp. 142-149.
- Fu, Z., Li, K., Pang, Y.J., Ma, L.Y., Wang, Z.Y. and Jiang, B., 2022. Study on water jet characteristics of square nozzle based on CFD and particle image velocimetry. Symmetry-Basel, 14(11), pp. 2392.
- Kandukuri, K.R., Sucheendran, M.M. and Jampana, P., 2024. Detailed study of cavity features and air entrainment due to the initial impact of plunging jet flows. Industrial & Engineering Chemistry Research, 63(43), pp. 18586-18598.
- Koga, M., 1982. Bubble entrainment in breaking wind waves. Tellus, 34(5), pp. 481-489.
- Kusabiraki, D., Murota, M., Ohno, S., Yamagiwa, K. Yasuda, M., and Ohkawa, A., 1990a. Gas entrainment rate and flow pattern in a plunging liquid jet aeration system using inclined nozzles. Journal of Chemical Engineering of Japan, 23(6), pp. 704-710.
- Kusabiraki, D., Niki, H, Yamagiwa, K., and Ohkawa, A., 1990b. Gas entrainment rate and flow pattern of vertical plunging liquid jets. The Canadian Journal of Chemical Engineering, 68(6), pp. 893-903.
- Ma, Y., Zhang, L., Yang, Y. and Wei, P., 2020. Air entrainment by inclined circular plunging water jets with various impingement heights. Water Supply, 20(8), pp. 3478-3486.
- McKeogh, E. J., and Ervine, D. A., 1981. Air entrainment rate and diffusion pattern of plunging liquid jets. Chemical Engineering Science, 36(7), pp. 1161-1172.
- Miwa, S., Maribe, T., Tsutstumi, K. and Hibiki, T., 2018. Experimental investigation of air entrainment by vertical plunging liquid jet. Chemical Engineering Science, 181, pp. 251-263.
- Miwa, S., Xiao, Y.G., Saito, Y. and Hibiki, T., 2019. Experimental study of air entrainment rates due to inclined liquid jets. Chemical Engineering Technology, 42(5), pp. 1059-1069.
- Oguz, H. N., 1998. Role of surface disturbances in the entrainment of bubbles by a liquid jet. Journal of Fluid Mechanics, 372, pp. 189-212.
- Ohl, C. D., Oguz, H. N., and Prosperetti, A., 2000. Mechanism of air entrainment by a disturbed liquid jet. Physics of Fluids, 12(7), pp. 1710-1714.
- Ozkan, F., Baylar, A. and Tugal, M., 2006. The performance of two phase flow systems in pond aeration”, International Journal of Science and Technology, 1(1), pp. 65-74.
- Qu, X., Goharzadeh, A., Khezzar, L. and Molki., A. 2013. Experimental characterization of air-entrainment in a plunging jet. Experimental Thermal and Fluid Science, 44, pp. 51-61.
- Salehi, F., Ajdehak, E. and Hardalupas, Y., 2022. Computational fluid dynamics modelling of air entrainment for a plunging jet. Chemical Engineering Research and Design, 179, pp. 319-330.
- Sene, K. J., 1988. Air entrainment by plunging jets. Chemical Engineering Science, 43(10), pp. 2615-2623.
- Tang, L., Wang, H. and Lin, P.Z., 2022. Numerical modeling of air entrainment by turbulent plunging jet and aerated flow in the plunging pool. Environmental Fluid Mechanics, 22(1), pp. 33-53.
- van de Sande, E., and Smith, J. M., 1976. Jet break-up and air entrainment by low velocity turbulent water jets. Chemical Engineering Science, 31(3), pp. 219-224.
- van de Sande, E., and Smith, J. M., 1973. Surface entrainment of air by high velocity water jets. Chemical Engineering Science, 28(5), pp. 1161-1168.
- Yamagiwa, K., Ito, A., Tajima, K., Yoshida, M., and Ohkawa, A., 2000. Effect of nozzle contraction angle on air entrainment rate of a vertical plunging liquid jet. Journal of Chemical Engineering of Japan, 33(5), pp. 805-807.
- Zhu, Y., Oguz, H. N., and Prosperetti, A., 2000. On the mechanism of air entrainment by liquid jets at a free surface. Journal of Fluid Mechanics, 404, pp. 151-177.