Have a personal or library account? Click to login
AI-Augmented Satellite Altimetry and in-Situ Civil Engineering Data for Coastal Deformation Analysis: A Field Validation Study Cover

AI-Augmented Satellite Altimetry and in-Situ Civil Engineering Data for Coastal Deformation Analysis: A Field Validation Study

Open Access
|Dec 2025

References

  1. Ablain, M., Legeais, J. F., Prandi, P., Marcos, M., Fenoglio-Marc, L., Dieng, H. B., et al. 2019. “Monitoring Sea Level Using Satellite Altimetry and Tide Gauges.” Surv. Geophys., 40(6), pp. 1293–1317.
  2. Bosello, F., Nicholls, R. J., Richards, J., Roson, R., and Tol, R. S. J. 2021. “Economic Impacts of Climate Change-Induced Sea-Level Rise: A Multi-Regional Analysis.” Glob. Environ. Change, 68, 102271.
  3. Breiman, L. 2001. “Random Forests.” Mach. Learn., 45(1), pp. 5–32.
  4. Carbognin, L., Teatini, P., and Tosi, L. 2019. “Land Subsidence in Venice: Updated Results and Future Perspectives.” Remote Sens., 11(24), 2951.
  5. Cao, Y., Zhang, L., Ding, X., and Lu, Z. 2021. “Monitoring Land Subsidence in the Yangtze River Delta Using Multi-Temporal InSAR and GPS Observations.” Remote Sens. Environ., 252, 112122.
  6. Chowdhury, M. R., Haque, A., and Alam, M. 2021. “Coastal Subsidence and Sea-Level Rise in Bangladesh: Implications for Adaptation Strategies.” Sci. Total Environ., 761, 143163.
  7. Dang, T. D., van Ginkel, K. C. H., Pham, H. V., Binh, D. V., and Stive, M. J. F. 2021. “Coastal Subsidence in the Mekong Delta: Implications for Future Delta Management.” Sci. Total Environ., 755, 142408.
  8. Dietterich, T. G. 2000. “Ensemble Methods in Machine Learning.” In Int. Workshop on Multiple Classifier Systems, pp. 1–15. Springer, Berlin.
  9. Efron, B., and Tibshirani, R. J. 1994. An Introduction to the Bootstrap. Chapman & Hall/CRC, New York.
  10. Ghoreishi, M., Amiri-Simkooei, A., and Asgari, J. 2021. “Machine Learning Methods for Sea Level Prediction Using Satellite Altimetry Data.” Adv. Space Res., 68(9), pp. 3695–3708.
  11. Higgins, S. A. 2016. “Advances in Delta-Subsidence Research Using Satellite Methods.” Hydrogeol. J., 24(3), pp. 587–600.
  12. Hinkel, J., Lincke, D., Vafeidis, A. T., Perrette, M., Nicholls, R. J., Tol, R. S. J., et al. 2019. “Coastal Flood Damage and Adaptation Costs under 21st Century Sea-Level Rise.” Proc. Natl. Acad. Sci. USA, 116(14), pp. 5692–5697.
  13. Hochreiter, S., and Schmidhuber, J. 1997. “Long Short-Term Memory.” Neural Comput., 9(8), pp. 1735–1780.
  14. Karavokiros, G., Pytharouli, S., and Kourkoulis, S. 2020. “GNSS Monitoring of Coastal Deformation in Thessaloniki, Greece.” J. Appl. Geod., 14(2), pp. 147–158.
  15. Kleinherenbrink, M., Riva, R. E. M., and Sun, Y. 2018. “Sub-Basin-Scale Sea Level Budgets from Satellite Altimetry, Argo Floats, and Satellite Gravimetry.” Earth Syst. Sci. Data, 10(2), pp. 1151–1169.
  16. LeCun, Y., Bengio, Y., and Hinton, G. 2015. “Deep Learning.” Nature, 521(7553), pp. 436–444.
  17. Li, Z., Wang, C., and Liu, Y. 2020. “Deep Learning for Coastal Flood Mapping Using Remote Sensing Data.” Remote Sens., 12(20), 3338.
  18. Marcos, M., and Wöppelmann, G. 2021. “Coastal Sea Level Rise in the Mediterranean Sea.” J. Geophys. Res. Oceans, 126(6), e2020JC016799.
  19. Martín Míguez, B., Testut, L., and Wöppelmann, G. 2019. “Performance of the SONEL Tide Gauge–GNSS Network for Coastal Sea Level Monitoring.” Mar. Geod., 42(6), pp. 457–473.
  20. Menéndez, M., Losada, I. J., and Méndez, F. J. 2019. “Variability of Extreme Sea Levels in the Mediterranean Sea and Their Impacts on Coastal Infrastructure.” Coastal Eng., 150, pp. 59–71.
  21. Nicholls, R. J., and Cazenave, A. 2019. “Sea-Level Rise and Its Impact on Coastal Zones.” Science, 328(5985), pp. 1517–1520.
  22. Pal, D., Ghosh, T., and Das, S. 2020. “Monitoring Coastal Land Subsidence in Kolkata Using GNSS and InSAR Observations.” Remote Sens. Appl. Soc. Environ., 19, 100351.
  23. Passaro, M., Rose, S. K., Andersen, O. B., Boergens, E., Calafat, F. M., Dettmering, D., et al. 2021. “Absolute Sea Level Trends from Tide Gauge–Corrected Satellite Altimetry at Coastal Scales.” Surv. Geophys., 42(5), pp. 1257–1281.
  24. Pham, B. T., Le, L. M., and Dou, J. 2019. “Development of Artificial Intelligence Models for Prediction of Coastal Erosion.” Water, 11(7), 1502.
  25. Piecuch, C. G., and Quinn, K. J. 2022. “Tide Gauge Records Reveal Increased Global Mean Sea Level Rise Acceleration.” Nat. Clim. Change, 12(8), pp. 720–725.
  26. Rahman, M. A., Stive, M. J. F., and Khan, M. S. A. 2022. “Coastal Vulnerability Assessment of the Sundarbans Using Integrated Geodetic and Remote Sensing Data.” J. Coastal Res., 38(2), pp. 320–332.
  27. Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., and Prabhat. 2019. “Deep Learning and Process Understanding for Data-Driven Earth System Science.” Nature, 566(7743), pp. 195–204.
  28. Rousseeuw, P. J., and Croux, C. 1993. “Alternatives to the Median Absolute Deviation.” J. Am. Stat. Assoc., 88(424), pp. 1273–1283.
  29. Wang, C., Li, Z., and Liu, Y. 2021. “Evaluating Uncertainty in Sea-Level Monitoring Using AI-Integrated Models.” Remote Sens. Environ., 263, 112567.
  30. Wöppelmann, G., and Marcos, M. 2022. “Coastal Sea Level Rise in Southern Europe and the Mediterranean Sea.” J. Geophys. Res. Oceans, 127(4), e2021JC018127. Yu, H., Pan, Y., and Ma, Y. 2022. “LSTM-Based Spatiotemporal Modeling for Coastal Deformation Prediction.” Remote Sens., 14(15), 3735.
  31. Zhang, J., Chen, Y., and Wang, Y. 2020. “Structural Health Monitoring of Coastal Infrastructures under Sea-Level Rise and Extreme Events.” Ocean Eng., 217, 107978.
Language: English
Page range: 275 - 284
Submitted on: Sep 3, 2025
|
Accepted on: Sep 29, 2025
|
Published on: Dec 15, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Shaghayegh Noori, published by University of Oradea, Civil Engineering and Architecture Faculty
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.