Have a personal or library account? Click to login
Cyclic Loading-Induced Surface Degradation and its Effect on the Frictional Behavior of Tire-Asphalt Contact Cover

Cyclic Loading-Induced Surface Degradation and its Effect on the Frictional Behavior of Tire-Asphalt Contact

By: S. R La,  X. B Li,  Anhua Xu and  J. H Fang  
Open Access
|Dec 2025

References

  1. Adamcs, Piotrowski, M., 2012. Use of the unified theory of rubber friction for slip-resistance analysis in the testing of footwear outsoles and compounds. Footwear Sci., 4(1), pp. 23–35.
  2. Beketov, A. and Khalimova, S., 2023. Impact of Roughness and Friction Properties of Road Surface of Urban Streets on the Traffic Safety. Komunikácie, 25(3), pp. 100–115.
  3. Behrouz, M., Moghadas, F.N. and Hamzeh, Z., 2022. Automatic Pavement Texture Measurement Using a New 3D Image-Based Profiling System. Measurement, 199, p. 111234.
  4. Borgs, C., De Coninck, J., Kotecký, R., et al., 1995. Does the roughness of the substrate enhance wetting? Phys. Rev. Lett., 74(12), p. 2292.
  5. Chu, L., Cui, X., Zhang, K., et al., 2019. Directional skid resistance characteristics of road pavement: Implications for friction measurements by British pendulum tester and dynamic friction tester. Transp. Res. Rec., 2673(10), pp. 793–803.
  6. Ciavarella, M., 2017. A simplified version of Persson’s multiscale theory for rubber friction due to viscoelastic losses. J. Tribol., 140(1), pp. 1–20.
  7. Fwa, T.F., 2017. Skid resistance determination for pavement management and wet-weather road safety. Int. J. Transp. Sci. Technol., 6(3), pp. 217–227.
  8. Georgouli, K., Plati, C. and Loizos, A., 2016. Assessment of dynamic modulus prediction models in fatigue cracking estimation. Mater. Struct., 49(12), pp. 5007–5019.
  9. Gerardo, W., Flintsch, et al., 2018. Evaluation of International Friction Index Coefficients for Various Devices. Transp. Res. Rec., 2094(1), pp. 136–143.
  10. Guo, K., 2016. UniTire: 统一轮胎模型 (UniTire: Unified Tire Model). Chin. J. Mech. Eng., 52(12), pp. 90–99.
  11. Gupta, A., Pradhan, S.K., et al., 2020. Numerical analysis of rubber tire/rail contact behavior in road cum rail vehicle under different inflation pressure values using finite element method. Mater. Today: Proc., 47, pp. 6628–6635.
  12. He, Y., Yang, X., Xiao, S., et al., 2023. Experimental study on the high-speed frictional behavior between the tire and asphalt pavement. Constr. Build. Mater., 371, p. 130782.
  13. Hofko, B., Kugler, H., Chankov, G., et al., 2019. A laboratory procedure for predicting skid and polishing resistance of road surfaces. Int. J. Pavement Eng., 20(4), pp. 439–447.
  14. Juan, C.A., 2017. Optimization of an optical test bench for tire properties measurement and tread defects characterization. Sensors, 17(4), pp. 707–713.
  15. Kane, M. and Edmondson, V., 2022. Tire/road friction prediction: Introduction of a simplified numerical tool based on contact modeling. Veh. Syst. Dyn., 60(3), pp. 770–789.
  16. Krishnanunni, C. and Rao, B., 2019. Decoupled technique for dynamic response of vehicle-pavement systems. Eng. Struct., 191, pp. 264–279.
  17. La, S., Wang, J., Zhang, X., et al., 2018. Frictional behavior of a micro-sized superconducting fiber in a low-temperature medium: Experimental and computational analysis. Acta Mech. Solida Sin., 31, pp. 405–415.
  18. La, S. and Wang, C., 2023. Experimental and numerical calculation of the friction performance of a concrete surface. Materials, 16(8), p. 2989.
  19. Lin, C. and Tongjing, W., 2018. Effect of fine aggregate angularity on skid-resistance of asphalt pavement using accelerated pavement testing. Constr. Build. Mater., 168, pp. 41–46.
  20. Liu, Y., Xu, X., Huang, Z., et al., 2023. Discrete-Continuous Coupling Simulation and Analysis for Asphalt Pavement Dynamic Stress Responses under a Moving Wheel Load. Case Stud. Constr. Mater., 1818(1), pp. 214–245.
  21. Liu, Z., Wang, F., Cai, Z., et al., 2023. A novel theoretical model of tire in-plane dynamics on uneven roads and its experimental validation. Mech. Syst. Signal Process., 186, p. 109854.
  22. Luo, L., Yang, S.-H., Oeser, M. and Liu, P., 2024. Moisture damage mechanism of asphalt mixtures containing reclaimed asphalt pavement binder: A novel molecular dynamics study. J. Clean. Prod., 475, p. 143711.
  23. Mahajan, G.R., Radhika, B. and Biligiri, K.P., 2022. A critical review of vehicle-pavement interaction mechanism in evaluating flexible pavement performance characteristics. Road Mater. Pavement Des., 23(4), pp. 735-769.
  24. Novikov, I. and Lazarev, D., 2017. Experimental Installation for Calculation of Road Adhesion Coefficient of Locked Car Wheel. Transp. Res. Procedia, 20, pp. 463–467.
  25. Qian, Z. and Meng, L., 2017. Study on micro-texture and skid resistance of aggregate during polishing. Front. Struct. Civ. Eng., 11, pp. 346–352.
  26. Rith, M., Kim, K.Y. and Lee, W.S., 2020. Characterization of long-term skid resistance in exposed aggregate concrete pavement. Constr. Build. Mater., 256, p. 119390.
  27. Roy, U., Farid, A. and Ksaibati, K., 2023. Effects of pavement friction and geometry on traffic crash frequencies: A case study in Wyoming. Int. J. Pavement Res. Technol., 16(06), pp. 1468–1481.
  28. Sajid, H.U., Naik, D.L. and Kiran, R., 2021. Improving the ice-melting capacity of traditional deicers. Constr. Build. Mater., 271, p. 121527.
  29. Sara, A., Ahmadreza, M., Amir, G., et al., 2021. Automatic pavement rutting measurement by fusing a high speed-shot camera and a linear laser. Constr. Build. Mater., 283, p. 122682.
  30. Serigos, P., Andre, D. and Prozzi, J., 2016. Incorporating surface microtexture in the prediction of skid resistance of flexible pavements. Transp. Res. Rec., 2457, pp. 105–113.
  31. Tan, T., Xing, C., Tan, Y., et al., 2019. Safety aspects on icy asphalt pavement in cold region through field investigations. Cold Reg. Sci. Technol., 161, pp. 21–31.
  32. Tomaraee, P., Mardani, A., Mohebbi, A., et al., 2015. Relationships among the contact patch length and width, the tire deflection, and the rolling resistance of a free-running wheel in a soil bin facility. Span. J. Agric. Res., 13(2), p. 0211.
  33. Wang, W., Yan, S. and Zhao, Y., 2015. Numerical and experimental studies of a radial truck tire with tread pattern. Simul., 91(11), pp. 970–979.
  34. Wei, H., Zhang, H., Li, J., et al., 2023. Effect of loading rate on failure characteristics of asphalt mixtures using acoustic emission technique. Constr. Build. Mater., 364, p. 129835.
  35. Yan, B., Mao, H., Zhong, S., Zhang, P. and Zhang, A., 2019. Experimental study on wet skid resistance of asphalt pavements in icy conditions. Materials, 12(8), p. 1201.
  36. Yu, M., You, Z., Wu, G., et al., 2020. Measurement and modeling of skid resistance of asphalt pavement: A review. Constr. Build. Mater., 260, p. 119878.
Language: English
Page range: 243 - 250
Submitted on: Jun 17, 2025
Accepted on: Jul 21, 2025
Published on: Dec 15, 2025
Published by: University of Oradea, Civil Engineering and Architecture Faculty
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 S. R La, X. B Li, Anhua Xu, J. H Fang, published by University of Oradea, Civil Engineering and Architecture Faculty
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.