Have a personal or library account? Click to login
Analysis of Power-Law Fin-Type Problems using Physics Informed Neural Networks Cover

Analysis of Power-Law Fin-Type Problems using Physics Informed Neural Networks

By: M. Göçer,  S.B. Coşkun and  M.T. Atay  
Open Access
|Dec 2025

References

  1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., and Kudlur, M., 2016, Tensorflow: A System for Large-Scale Machine Learning. OSDI’16: Proceedings of the 12th USENIX conference on Operating Systems Design and Implementation, 16, pp. 265–283. doi: 10.48550/arXiv.1605.08695.
  2. Atay, M.T., Coşkun, S.B., 2008. Comparative Analysis of Power-Law Fin-Type Problems Using Variational Iteration Method and Finite Element Method. Math. Probl. Eng., 2008, 635231. doi:10.1155/2008/635231.
  3. Bai, J., Rabczuk, T., Gupta, A., Alzubaidi, L., Gu, Y., 2023. A physics-informed neural network technique based on a modified loss function for computational 2D and 3D solid mechanics. Comput. Mech., 71, pp. 543-562. doi: 10.1007/s00466-022-02252-0.
  4. Cai, S., Wang, Z., Wang, S., Perdikaris, P., Karniadakis, G.E., 2021. Physics-Informed Neural Networks for Heat Transfer Problems. J. Heat Transf., 143, 060801. doi: 10.1115/1.4050542.
  5. Chen, Y., Lu, L., Karniadakis, G.E., Dal Negro, L., 2020. Physics-informed neural networks for inverse problems in nano-optics and metamaterials. Opt. Express, 28, 11618. doi: 10.1364/OE.384875.
  6. Fang, Z., Zhan, J., 2020. Deep physical informed neural networks for metamaterial design. IEEE Access, 8, pp. 24506–24513. doi: 10.1109/ACCESS.2019.2963375.
  7. Haghighat, E., Raissi, M., Moure, A., Gomez, H., Juanes, R., 2021. A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics. Comput. Methods Appl. Mech. Engrg., 379, 113741. doi: 10.1016/j.cma.2021.113741.
  8. Hao, W.Q., Tan, L., Yang, X.G., Shi, D.Q., Wang, M.L., Miao, G.L., Fan, Y.S., 2023. A physics-informed machine learning approach for notch fatigue evaluation of alloys used in aerospace. Int. J. Fatigue, 170, 107536. doi: 10.1016/j.ijfatigue.2023.107536.
  9. Hu, Z., Jagtap, A.D., Karniadakis, G.E., Kawaguchi, K., 2019. When Do Extended Physics-Informed Neural Networks (XPINNs) Improve Generalization? arXiv, arXiv:2109.09444. doi: 10.1137/21M1447039.
  10. Kern, D.Q., Kraus, A.D., 1972. Extended Surface Heat Transfer. McGraw-Hill, New York, NY, USA. ISBN: 978-0070341951.
  11. Liaw, S.P., Yeh, R.H., 1994. Fins with temperature dependent surface heat flux—I: single heat transfer mode. Int. J. Heat Mass Transf., 37(10), pp. 1509–1515. doi: 10.1016/0017-9310(94)90152-X.
  12. Madir, B.E., Luddens, F., Lothode, C., Danaila, I., 2024. Physics Informed Neural Networks for heat conduction with phase change. arXiv, arXiv:2410.14216. doi: 10.48550/arXiv.2410.14216.
  13. Ning, L., Cai, Z., Dong, H., Liu, Y., Wang, W., 2023. A peridynamic-informed neural network for continuum elastic displacement characterization. Comput. Methods Appl. Mech. Engrg., 407, 115909. doi: 10.1016/j.cma.2023.115909.
  14. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer, A., 2017. Automatic Differentiation in Pytorch. 31st Conference on Neural Information Processing Systems (NIPS 2017), CA, USA. https://openreview.net/forum?id=BJJsrmfCZ.
  15. Raissi, M., Perdikaris, P., Karniadakis, G.E., 2019a. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys., 378, pp. 686–707. doi: 10.1016/j.jcp.2018.10.045.
  16. Raissi, M., Wang, Z., Triantafyllou, M.S., Karniadakis, G.E., 2019b. Deep learning of vortex-induced vibrations. J. Fluid Mech., 861, pp. 119–137. doi: 10.48550/arXiv.1808.08952.
  17. Raissi, M., Yazdani, A., Karniadakis, G.E., 2020. Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations. Science, 367, pp. 1026–1030. doi: 10.1126/science.aaw4741.
  18. Russel, C., 2023. Applying Physics-Informed Neural Networks to the Solution of Parametric, Nonlinear Heat Conduction Problems. M.Sc. Thesis, University of Michigan-Flint, University of Michigan Library, Michigan, USA. doi: 10.7302/21927.
  19. Sen, A.K., Trinh, S., 1986. An exact solution for the rate of heat transfer from a rectangular fin governed by a power law-type temperature dependence. J. Heat Transfer, 108(2), pp. 457-459. doi: 10.1115/1.3246946.
  20. Shukla, K., Jagtap, A.D., Karniadakis, G.E., 2021. Parallel physics-informed neural networks via domain decomposition. J. Comput. Phys., 447, 110683. doi: 10.48550/arXiv.2104.10013.
  21. Zhu, Q., Zhao, Z., Yan, J., 2023. Physics-informed machine learning for surrogate modeling of wind pressure and optimization of pressure sensor placement. Comput. Mech., 71, pp. 481-491. doi: 10.1007/s00466-022-02251-1.
Language: English
Page range: 221 - 228
Submitted on: Jun 17, 2025
Accepted on: Jul 2, 2025
Published on: Dec 15, 2025
Published by: University of Oradea, Civil Engineering and Architecture Faculty
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 M. Göçer, S.B. Coşkun, M.T. Atay, published by University of Oradea, Civil Engineering and Architecture Faculty
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.