References
- M.F. Ahlinhan, O. J. Dansou, B. D. Djenou, L. Sounouvou, E. C. Adjovi. 2025. “Swelling and Shrinkage Performance of Expansive Soils under Repeated Moisture Variations”. Current Journal of Applied Science and Technology 44 (4):91-110. https://doi.org/10.9734/cjast/2025/v44i44517.
- E. Chabi, O. G. Adéoti, M. F. Ahlinhan, M. L. Agassoussi (2025). Evaluating pavement performance on expansive clay soils subjected to cyclic shrinkage and swelling. Open Journal of Applied Sciences, 15(1), 70-97.
- S.H. Md, K. Ling-wei, Y. Song, Effect of drying-wetting cycles on saturated shear strength of undisturbed residual soils, American Journal of Civil Engineering. 4 (2016) 143–150.
- A.A. Basma, A.S. Al-Homoud, A.I.H. Malkawi, M.A. Al-Bashabsheh, Swelling-shrinkage behavior of natural expansive clays, Applied Clay Science. 11 (1996) 211–227.
- F. Louati, H. Trabelsi, M. Jamei, S. Taibi, Impact of wetting-drying cycles and cracks on the permeability of compacted clayey soil, European Journal of Environmental and Civil Engineering. 25 (2018) 696–721.
- B. Gbaffonou, Y. Tankpinou Kiki, V. Tohoungba, V.S. Gbaguidi, Influence of drying-wetting cycles on the compressibility of clay soils in the commune of Houeyogbe, IJESRT. 10 (2021) 11. https://doi.org/10.29121/ijesrt.v10.i5.2021.1.
- B. Gbaffonou, Influence des cycles de séchage-humidification sur les paramètres mécaniques des sols argileux : Cas de la commune de Houéyogbé (2022), Thèse de doctorat de l´université d´Abomey-Calavi.
- Abbas, M.F., Shakerc, AA, Al-Shamrani, M,A, (2023) Hydraulic and volume change behaviors of compacted highly expansive soil under cyclic wetting and drying Journal of Rock Mechanics and Geotechnical Engineering 15, 486-499.
- NF EN ISO 17892-1 Reconnaissance et essais géotechniques - Essais de laboratoire sur les sols - Partie 1 : détermination de la teneur en eau, Association Française de Normalisation. (2014).
- NF EN ISO 17892-12 Reconnaissance et essais géotechniques - Essais de laboratoire sur les sols - Partie 12 : détermination des limites de liquidité et de plasticité, Association Française de Normalisation. (2018).
- NF EN ISO 17892-3 Reconnaissance et essais géotechniques - Essais de laboratoire sur les sols - Partie 3 : détermination de la masse volumique des particules solides, Association Française de Normalisation. (2015).
- ISO 14235 Soil quality — Determination of organic carbon by sulfochromic oxidation, International Standard Organization (1998).
- NF EN ISO 17892-4 Reconnaissance et essais géotechniques - Essais de laboratoire sur les sols - Partie 4 : Détermination de la distribution granulométrie des particules, Association Française de Normalisation. (2018).
- NF EN ISO 17892-5 Reconnaissance et essais géotechniques - Essais de laboratoire sur les sols - Partie 5 : Essai de chargement par palier à l’œdomètre, Association Française de Normalisation. (2017).
- NF EN ISO 17892-10 Reconnaissance et essais géotechniques - Essais de laboratoire des sols - Partie 10 : Essai de cisaillement direct, Association Française de Normalisation. (2018).
- Tankpinou Kiki S.T. (2016) Caractérisation minéralogique, thermique er microscopique des sols fins en technique routièr. Thése de doctorat de l´université d´Abomey-Calavi et de l´université de Bordeaux.
- Shear, D., Olsen, H., Nelson, K., 1992. Effects of desiccation on the hydraulic conductivity versus void ratio relationship for a natural clay. Transport. Res. Rec. 1369, 130-135.
- Albrecht, B.A., Benson, C.H., 2001. Effect of desiccation on compacted natural clays. J. Geotech. Geoenviron. Eng. 127, 67-75.
- Akcanca, F., Aytekin, M., 2014. Impact of wetting-drying cycles on the hydraulic conductivity of liners made of lime-stabilized sand-bentonite mixtures for sanitary landfills. Environ. Earth Sci. 72, 59-66.
- Day, R.W., 1994. Swell-shrink behavior of compacted clay. J. Geotech. Geoenviron. Eng. ASCE 120, 618-623.
- Day, R.W.,1997. Discussion of hydraulic conductivity of desiccated geosynthetic clay liners. J. Geotech. Geoenviron. Eng. 123, 484-486.
- Day, R.W., 1998. Discussion: infiltration tests on fractured compacted clay. J. Geotech. Geoenviron. Eng. 124, 1149-1152.
- Azizi, A., Musso, G., Jommi, C., 2020. Effects of repeated hydraulic loads on microstructure and hydraulic behaviour of a compacted clayeysilt. Can. Geotech. J. 57, 100-114.
- Soltani A, Raeesi R and O’Kelly BC (2022) Cyclic swell–shrink behaviour of an expansive soil treated with a sulfonated oil. Proceedings of the Institution of Civil Engineers – Ground Improvement 175(3): 166–179, https://doi.org/10.1680/jgrim.19.00084.
- Dif, A., Bluemel, W., 1991. Expansive soils under cyclic drying and wetting. Geotech.Test J. 14, 96-102.
- Al-Homoud, A.S., Basma, A.A., Husein Malkawi, A.I., Al Bashabsheh, M.A., 1995. Cyclic swelling behavior of clays. J. Geotech. Eng. 121, 562-565.
- Tripathy, S., Rao, K.S., Fredlund, D.G., 2002. Water content void ratio swell-shrink paths of compacted expansive soils. Can. Geotech. J. 39, 938-959.
- Estabragh A.R., Parsaei J.B., Javadi A.A., (2015) Laboratory investigation of the effect of cyclic wetting and drying on the behaviour of an expansive soil. Soils and Foundations, 2015; 55 (2): 304-314.
- Popescu, M.E., 1980. Behaviour of expansive soils with crumb structures. In: Proceedings of the 4th International Conference on Expansive Soils, 158-171.
- Osipov, V.I., Bik, N.N., Rumjantseva, N.A., 1987. Cyclic swelling of clays. Appl. Clay Sci. 2, 363-374.
- Sorensen K.K., Okkels N. (2013) Correlation between drained shear strength and plasticity index of undisturbed overconsolidated clays. In Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris, France.
- X. Qin, D.-H. Han, L. Zhao. (2019) Elastic characteristics of overpressure due to smectite-to-illite transition based on micromechanism analysis, geophysics, vol. 84, No. 4.
- P. Liu; R.-P. Chen, K. Wu, X. Kang (2020) Effects of drying-wetting cycles on the mechanical behavior of reconstituted granite-residual soils, J. Mater. Civ. Eng., 2020, 32(8): 04020199.
- Day, R.W., 1999. Geotechnical and Foundation Engineering Design and Construction. McGraw-Hill, New York.
- Haines, W.B., 1923. The volume changes associated with variations of water content in soil. J. Agric. Sci. 13, 296-310.
- Bell, F.G., 2000. Engineering properties of soils and rocks. Butterwerth Heinemann Ltd., Woburn, MA.
- Popescu, M.E., 1979. Engineering problems associated with expansive clays from Romanian. Eng. Geol. 14, 43-53.
- Gourley, C. S., Newill, D., Schreiner, H. D. (1994). Expansive soils: TRL’s research strategy. In P. G. Fookes & R. H. G. Parry (Eds.), Proceedings of the 1st International Symposium on Engineering Characteristics of Arid Soils (pp. 247 260). Rotterdam: A.A. Balkema. ISBN 9054103655.
- A. R. Estabragh, A. Soltani, A. A. Javadi (2018) Effect of pore water chemistry on the behaviour of a kaolin–bentonite mixture during drying and wetting cycles. European Journal of Environmental and Civil Engineering, Volume 24, 2020 - Issue 7, 895-914, https://doi.org/10.1080/19648189.2018.1428691.
- Gourley, C. S., Newill, D., & Schreiner, H. D. (1994). Expansive soils: TRL’s research strategy. In P. G. Fookes & R. H. G. Parry (Eds.), Proceedings of the 1st International Symposium on Engineering Characteristics of Arid Soils (pp. 247-260). Rotterdam: A.A. Balkema. ISBN 9054103655.
- Driscoll, R. M. C., & Crilly, M. S. (2000). Subsidence damage to domestic buildings: Lessons learned and questions remaining (1st Ed.). Watford: CRC Press. ISBN 1860814336.
- Chen, F. H. (1975). Foundations on expansive soils (1st Ed.). Amsterdam: Elsevier Scientific Publication Co. ISBN 0444413936.
- Nelson, J. D., Miller, D. J. (1992). Expansive soils: Problems and practice in foundation and pavement engineering (1st Ed.). New York: John Wiley & Sons. ISBN 0471511862.
- M.S. Hoffman, M.R. Thompson (1981) Nondestructive Testing of Flexible Pavements: Field Testing Program Summary. Transportation Engineering Series 31, Illinois Cooperative highway and Transportation Research Program, Series 188, University of Illinois at Urbana-Champaign.
- M.S. Hoffman, M.R. Thompson (1982) Comparative Study of Selected Nondestructive Testing Devices. In Transportation Research Record 852, TRB, National Research Council, Washington, D.C., 1982, pp. 32-41.
- 1. Han Z., Zhang J., Xue L., Fang H., Xiao Z. Dynamic Simulation of FWD Tests on Flexible Transversely Isotropic Pavements with Imperfect Interfaces. Computers and Geotechnics, Vol. 130, 2021, p. 103914.
- Y. Wang, Y. Zhao, F. Wu, Q. Sun (2024) Intelligent Back-calculation Approach to Obtain Viscoelastic Properties of Asphalt Pavements on Bedrock using Falling Weight Deflectometer Tests. Transportation Research Record: Journal of the Transportation Research Board. https://doi.org/10.1177/0361198124129258.