References
- I. U. Elvis and I. C. Chinwuba, “Optimization of the California Bearing Ratio of Lateritic Soil Stabilized with Rice Husk Ash using Scheffe’s Method,” J. Kejuruter., vol. 35, no. 3, pp. 705–715, 2023, doi: 10.17576/jkukm-2023-35(3)-19.
- G. Habert, S. A. Miller, V. M. John, J. L. Provis, A. Favier, A. Horvath & K. L. Scrivener, “Environmental impacts and decarbonization strategies in the cement and concrete industries,” Nat Rev Earth Environ 1, 559–573 (2020). https://doi.org/10.1038/s43017-020-0093-3.
- J. S. Damtoft, J. Lukasik, D. Herfort, D. Sorrentino, and E. M. Gartner, “Sustainable Development and Climate Change Initiatives” Cement and Concrete Research, 38, 115-127, 2008, http://dx.doi.org/10.1016/j.cemconres.2007.09.008.
- D.N.-L. Botchway, R.O. Afrifa, C.Y. Henaku, (2020) Effect of Partial Replacement of Ordinary Port land Cement (OPC) with Ghanaian Rice Husk Ash (RHA) on the Compressive Strength of Concrete. Open Journal of Civil Engineering, 10, 353-363. https://doi.org/10.4236/ojce.2020.104027.
- D. T. Nguyen, N. T. Nguyen, H. Ngoc, T. Pham, H. H. Phung, and H. Van, “Rice husk ash and its utilization in soil improvement: An overview” Journal of Mining and Earth Sciences Vol. 61, Issue 3 (2020) 1 - 11.
- M. F. Ahlinhan, E. Chabi, F. Sedoka, A. Akponon, and E. C. Adjovi, “Synthesis and Characterization of Local Bio-Sourced Geopolymer Binder: Application to Compressed Earth Blocs,” vol. 14, pp. 49–60, 2024, doi: 10.17265/2161-6213/2024.4-6.002.
- D. E. Wibowo, M. Endaryanta, and H. Prayuda (2023) “Soil stabilization using rice husk ash and cement for pavement subgrade materials” Revista de la Construcción. Journal of Construction, 22(1), 192-202. https://doi.org/10.7764/RDLC.22.1.192.
- E. A. Eberemu (2011) “Consolidation Properties of Compacted Lateritic Soil Treated with Rice Husk Ash” Geomaterials, 2011, 1, 70-78 doi:10.4236/gm.2011.13011.
- Bournebe B., Onchiri R.O, Thuo J. Ng. (2023), Investigation on the Suitability of High Clay Lateritic Soils Stabilized with Cement and Rice Husk Ash for Use in Road Base Construction: A Case Study of Juja Town, nternational Journal of Engineering Trends and Technology, https://doi.org/10.14445/22315381/IJETT-V71I2P215.
- Alhassan, M. (2008) “Potentials of Rice Husk Ash for Soil Stabilization”. Assumption University (AU) Journal of Technology, 11, 246-250. http://repository.futminna.edu.ng:8080/jspui/handle/123456789/2256.
- S. O. Sore, A. Messan, E. Prud’homme, G. Escadeillas, and F. Tsobnang, “Synthesis and characterization of geopolymer binders based on local materials from Burkina Faso – Metakaolin and rice husk ash,” Constr. Build. Mater., vol. 124, pp. 301–311, 2018, https://doi.org/10.1016/j.conbuildmat.2018.01.051.
- M. N.S. Hadi, B.C. Bodhinayake (2003) “Non-linear finite element analysis of flexible pavements”, Advances in Engineering Software 34 (2003) 657–662, doi:10.1016/S0965-9978(03)00109-1.
- E. U. Nathaniel, N. J. George, J. I. Ibanga, and A. M. Ekanem, “Efficacy of Hilbert-Huang Transform (HHT) in the Analysis of Instantaneous Low Frequency Waves of Magnetosheath,” Int. J. Geosci., vol. 07, no. 01, pp. 11–19, 2016, doi: 10.4236/ijg.2016.71002.
- H. Wang, J. Yang, and H. Wang, “Numerical Simulation on Reflective Cracking Behavior of Asphalt Pavement” Appl. Sci. 2021, 11, 7990. https://doi.org/10.3390/app11177990.
- A. Nega, D. Gedafa, and H. Nikraz, “Stress and Strain Characteristics in Flexible Pavement Using Three-Dimensional Nonlinear Finite Element Analysis,” Int. J. Pavement Res. Technol., no. 0123456789, 2024, doi: 10.1007/s42947-024-00422-2.
- Y. Lokesh, H. R. Parate, H. M. R. Swamy, and H. Ali, “Development of prediction model for structural behavior and gradation of porous asphalt pavement,” Discov. Civ. Eng., vol. 1, no. 1, 2024, doi: 10.1007/s44290-024-00012-y.
- K. Gao et al., “Effect of nano-SiO2 on the alkali-activated characteristics of metakaolin-based geopolymers,” Constr. Build. Mater., vol. 48, pp. 441–447, 2013, doi: 10.1016/j.conbuildmat.2013.07.027.
- P. Duxson, S. W. Mallicoat, G. C. Lukey, W. M. Kriven, and J. S. J. van Deventer, “The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 292, no. 1, pp. 8–20, 2007, doi: 10.1016/j.colsurfa.2006.05.044.
- H. Xu and J. S. J. Van Deventer, “The geopolymerisation of alumino-silicate minerals,” Int. J. Miner. Process., vol. 59, no. 3, pp. 247–266, 2000, doi: 10.1016/S0301-7516(99)00074-5.
- F. Pacheco-Torgal, J. Castro-Gomes, and S. Jalali, “Alkali-activated binders: A review. Part 2. About materials and binders manufacture,” Constr. Build. Mater., vol. 22, no. 7, pp. 1315–1322, 2008, doi: 10.1016/j.conbuildmat.2007.03.019.
- Z. Zhang, H. Wang, Y. Zhu, A. Reid, J. L. Provis, and F. Bullen, “Using fly ash to partially substitute metakaolin in geopolymer synthesis,” Appl. Clay Sci., vol. 88–89, pp. 194–201, 2014, doi: 10.1016/j.clay.2013.12.025.
- F. Pelisser, E. L. Guerrino, M. Menger, M. D. Michel, and J. A. Labrincha, “Micromechanical characterization of metakaolin-based geopolymers,” Constr. Build. Mater., vol. 49, pp. 547–553, 2013, doi: 10.1016/j.conbuildmat.2013.08.081.
- Asociación Mundial de la Carretera., REVUE du guide pratique de dimmensionement des chaussées pour les pays tropicaux. 2019.
- A. Dione, “Estimation du Module réversible de Graves Non traitées et modélisation par éléments finis de chaussées souples en vue d’un dimensionnement mécanistique-empirique”, doi: 10.13140/RG.2.1.4847.8961.
- C. Ferone, F. Colangelo, R. Cioffi, F. Montagnaro, L. Santoro, “Mechanical performances of weathered coal fly ash based geopolymer bricks” Procedia Eng., vol. 21, pp. 745–752, 2011, doi: 10.1016/j.proeng.2011.11.2073.
- I. Blanco, A. D’Angelo, V. Viola, L. Vertuccio. M. Catauro “Metakaolin-based geopolymers filled with volcanic fly ashes: FTIR, thermal characterization, and antibacterial property”, Science and Engineering of Composite Materials 2023; 30: 20220192, https://doi.org/10.1515/secm-2022-0192.
- Sore, S.O., Messan, A., Prud’Homme, E., Escadeillas, G. and Tsobnang, F. (2020) Comparative Study on Geopolymer Binders Based on Two Alka line Solutions (NaOH and KOH). Journal of Minerals and Materials Characterization and Engineering, 8, 407-420. https://doi.org/10.4236/jmmce.2020.86026.
- Simulia (2021) Abaqus User’s manual, version 6.18. Simulia, Providence, RI, USA.
- K. Humphreys, M. Mahasenan, Toward a sustainable cement industry. Sub-study 8: climate change, An Independent Study Commissioned to Battelle by World Business Council for Sustainable Development, March 2002.
- C.E.B.T.P Guide pratique de dimensionnement des chaussées pour les pays tropicaux, 1984, 147 pages.
- Sanchez-Silva L, Lopez-Gonzalez D, Villasenor J, Sanchez P, Valverde JL. Thermogravimetric–mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis. Bioresour. Technol. 2012; 109:163–72.
- Yang H, Yan R, Chen H, Lee DH, Zheng C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007, 86:1781–8.
- Roque-Diaz P, University C, Villas L, Shemet CVZh, Lavrenko VA, Khristich VA. Studies on thermal decomposition and combustion mechanism of bagasse under non-isothermal conditions. Thermochim Acta 1985, 93:349–52.
- Biagini E, Barontini F, Tognotti L. Devolatilization of biomass fuels and biomass components studied by TG/FTIR technique. Ind Eng Chem Res 2006;45: 4486–93.
- Antal MJ, Varhegyi G. Cellulose pyrolysis kinetics: the current state of knowledge. Ind Eng Chem Res 1995; 34:703–17.
- Sore S.O, Adamah Messan A., Prud’homme E., Escadeillas G., Tsobnang F. (2018), Stabilization of compressed earth blocks (CEBs) by geopolymer binder based on local materials from Burkina Faso, Construction and Building Materials 165 (2018) 333–345, https://doi.org/10.1016/j.conbuildmat.2018.01.051.
- Y. Millogo, K. Traoré, R. Ouedraogo, K. Kaboré, P. Blanchart, J.H. Thomassin, Geotechnical, mechanical, chemical and mineralogical characterization of a lateritic gravels of Sapouy (Burkina Faso) used in road construction, Constr. Build. Mater. 22 (2008) 70–76, https://doi.org/10.1016j.conbuildmat.2006.07.014.
- Hussain, M.; Levacher, D.; Saouti, L.; Leblanc, N.; Zmamou, H.; Djeran-Maigre, I.; Razakamanantsoa, A. Implementation on a Preparation and Controlled Compaction Procedure for Waste-Fiber-Reinforced Raw Earth Samples. J. Compos. Sci. 2022, 6, 3. https://doi.org/10.3390/jcs6010003.
- Abbey, S.J.; Amakye, S.Y.O.; Eyo, E.U.; Booth, C.A.; Jeremiah, J.J. Wet–Dry Cycles and Microstructural Characteristics of Expansive Subgrade Treated with Sustainable Cementitious Waste Materials. Materials 2023, 16, 3124. https://doi.org/10.3390/ma16083124.
- Kathleen Dall Bello De Souza Risson Francieli S. Cofani Pinto, Gersson F.B. Sandoval, Marcos Camargo, André Campos De Moura Berenice Martins Toralles MOLDING PROCEDURE FOR PERVIOUS CONCRETE SPECIMENS BY DENSITY CONTROL, Case Studies in Construction Materials 15 (2021), https://doi.org/10.1016/j.cscm.2021.e00619.
- NF P 94093 Sols, reconnaissance et essais, détermination des références de compactage d´un matériau, essai Proctor normal, essai Proctor modifié du 17 Octobre 2014.
- Hu, Z.; Peng, K.; Li, L.; Ma, Q.; Xiao, H.; Li, Z.; Ai, P. Effect of Wetting-Drying Cycles on Mechanical Behaviour and Electrical Resistivity of Unsaturated Subgrade Soil. Adv. Civ. Eng. 2019, 2019, 3465327.
- ASTM D559/D559M-15; Standard Test Methods for Wetting and Drying Compacted Soil-Cement Mixture1. ASTM: West Conshohocken, PA, USA, 2016.