Have a personal or library account? Click to login
Thermal Assessment of Prefabricated Apartment Blocks in Oradea: Monitoring, Rehabilitation and Recommendations Cover

Thermal Assessment of Prefabricated Apartment Blocks in Oradea: Monitoring, Rehabilitation and Recommendations

Open Access
|May 2025

References

  1. Drimer, M., 1965. Proiecte tip pentru clădiri de locuit cu P+4 niveluri din panouri mari (Standardized projects for residential buildings with p+4 levels made of large prefabricated panels), in Arcanum Digital Archive Revista Arhitectura 13, no. 5, București, pp. 365-367; https://adt.arcanum.com/ro/view/Arhitectura_1965.
  2. Drimer, M., Kereaski, A., Lazăr, M., Popescu, E., 1960. O clădire experimentală din panouri mari (An experimental building made of large prefabricated panels), in Arcanum Digital Archive Revista Arhitectura, 8, no. 2, București, pp. 80-84; https://adt.arcanum.com/ro/view/Arhitectura_1960.
  3. Hudiță, H., 1976. Actualitatea panourilor mari (The current state of large prefabricated panels), in Arcanum Digital Archive Revista Arhitectura, 24, no. 2, București, pp. 139-140; https://adt.arcanum.com/ro/view/Arhitectura_1976
  4. Juster, W., 1965. Industrializarea construcțiilor de locuințe (Industrialization of Housing Construction). in Arcanum Digital Archive Revista Arhitectura 13, no. 5, București, pp. 356-362; https://adt.arcanum.com/ro/view/Arhitectura_1965.
  5. Juster, W., 1965b. Noi secțiuni și clădiri de locuit cu P+4 niveluri din panouri mari prefabricate (New Sections and Residential Buildings with P+4 Levels Made of Large Prefabricated Panels). in Arcanum Digital Archive Revista Arhitectura 13, no. 5, București, pp. 363-367; https://adt.arcanum.com/ro/view/Arhitectura_1965.
  6. Roșianu, L., 1965. Soluții de structuri industrializate pentru clădiri de locuit” (Industrialized Structural Solutions for Residential Buildings), in Arcanum Digital Archive Revista Arhitectura 13, no. 5, București, pp. 368-374; https://adt.arcanum.com/ro/view/Arhitectura_1965.
  7. Ciliciu, C., 2020. Urbanismul în era „de stat”. Sistematizarea Oradiei în comunism (Urbanism in the Era of the “State”. The Systematization of Oradea during Communism), Oradea, Muzeul Țării Crișurilor.
  8. Amirbekova, A., Abdykarimova, S., Oliynyk, O., 2023. Renovation of Residential Buildings of the First Mass Series from A Sustainable Development Point of View, Civil Engineering and Architecture 11(4): 1814-1823; DOI: 10.13189/cea.2023.110412.
  9. An, Y.-S., Kim, J., Joo, H.-J., Han, G., Kim, H., Lee, W., Kim, M.-H., 2023. Retrofit of renewable energy systems in existing community for positive energy community, Energy Reports, 9, pp. 3733–3744; https://doi.org/10.1016/j.egyr.2023.02.055.
  10. Brebu, F.M., Jianu, M.R., David, V., Bălă, A.-C., 2023. Thermal imaging used in building thermal evaluation, Romanian Journal of Transport Infrastructure, Vol. 12, No.2, pp. 1-11; DOI: 10.2478/rjti-2023-0009.
  11. Cavagnoli, S., Fabiani, C., Frota de Albuquerque Landi, F., Pisello, A.L., 2024. Advancing sustainable construction through comprehensive analysis of thermal, acoustic, and environmental properties in prefabricated panels with recycled PET materials, Energy & Buildings, 312, 114218, pp. 1-21; https://doi.org/10.1016/j.enbuild.2024.114218.
  12. Kalm, K., Spackova, P., Sýkora, J., Spacek, O., 2023. Housing estates’ trajectories in post-socialist countries: Similarities and differences of Estonian and Czech cities, Cities, 135, 104209, pp. 1-18; https://doi.org/10.1016/j.cities.2023.104209.
  13. Kuusk, K., Kalamees, T., 2015. nZEB retrofit of a concrete large panel apartment building, Energy Procedia 78, pp. 985–990; https://doi.org/10.1016/j.egypro.2015.11.038
  14. Matic, D., Calzada, J.-R., Eric, M., Babin, M., 2015. Economically feasible energy refurbishment of prefabricated building in Belgrade, Serbia, Energy and Buildings, 98, pp. 74–81; http://dx.doi.org/10.1016/j.enbuild.2014.10.041.
  15. Onyszkiewicz, J., Sadowski, K., 2022. Proposals for the revitalization of prefabricated building facades in terms of the principles of sustainable development and social participation, Journal of Building Engineering, 46, 103713, pp. 1-22; https://doi.org/10.1016/j.jobe.2021.103713.
  16. Pihelo, P., Kalamees, T., 2025. Performance evaluation and development of prefabricated insulation elements for renovation of apartment buildings with autoclaved aerated concrete external walls, Energy & Buildings, 332, 115439, pp. 1-13; https://doi.org/10.1016/j.enbuild.2025.115439.
  17. Ryu, J., Lee, K.H., 2025. Feasibility of Low-Temperature District Heating with Decentralized substations in Korean apartment buildings: Analysis of heat loss, energy efficiency, and return temperature optimization, Applied Thermal Engineering, 263, 125363, pp. 1-25; https://doi.org/10.1016/j.applthermaleng.2024.125363
  18. Vallati, A., Fiorini, C.V., Grignaffini, S., Ocłon, P., Di Matteo, M., Kobylarczyk, J., 2023. Energy retrofit optimization for social building in temperate climate zone, Energy & Buildings, 282, 112771; https://doi.org/10.1016/j.enbuild.2023.112771.
  19. Vankova, L., Kocourkova, G., Krejza, Z., Pospichalova, B., 2023. Economic Profitability of the Revitalization of Prefabricated Housing Estate in the Czech Republic, Procedia Computer Science, 219, pp. 1617-1625; https://doi.org/10.1016/j.procs.2023.01.454.
  20. Wakili, K.G., Dworatzyk, C., Sanner, M., Sengespeick, A., Paronen, M., Stahl, T., 2018. Energy efficient retrofit of a prefabricated concrete panel building (Plattenbau) in Berlin by applying an aerogel based rendering to its façades, Energy & Buildings, 165, pp. 293–300; https://doi.org/10.1016/j.enbuild.2018.01.050.
  21. Waqas, A., Araji M.T., 2023. Machine learning-aided thermography for autonomous heat loss detection in buildings, Energy Conversion and Management, 304, 118243, pp. 1-16; https://doi.org/10.1016/j.enconman.2024.118243.
  22. Yang, S., Yung, B.-Y., Kim, Y.U., Hong, T., Kim, S., 2022. Experimental-based energy performance evaluation of low-cost retrofit strategy for aging low-rise residential building for carbon neutrality, Case Studies in Thermal Engineering, 40, 102535; https://doi.org/10.1016/j.csite.2022.102535.
  23. Studiu cromatic privind faţadele blocurilor cuprinse în programele de reabilitare termică, în vederea integrării acestora în contextul urban (Chromatic Study of the Facades of Apartment Blocks Included in Thermal Rehabilitation Programmes for Their Integration into the Urban Context), 2015, SC Planwerk SRL, Urban Planning and Architectural Study for Oradea.
  24. MC 001, 2022. Metodologie de calcul a performanței energetice a clădirilor. București: Ministerul Dezvoltării, Lucrărilor Publice și Administrației.
  25. Ordin No. 2641, 2017. Performanța energetică a anvelopei clădirilor, București, Ministerul Dezvoltării Regionale, Administrației Publice și Fondurilor Europene.
  26. GP 123, 2013. Ghid de proiectare pentru modernizarea anvelopei și a sistemelor clădirilor, București, Ministerul Dezvoltării Regionale și Administrației Publice.
  27. HG 1034, 2020. Strategia Națională de Renovare pe Termen Lung, București: Monitorul Oficial.
  28. NP 107, 2005. Normative on thermal calculation of building envelope elements for heat loss reduction. București: Ministerul Transporturilor, Construcțiilor și Turismului.
  29. ENERG+; https://energ-plus.ro. (view at 12 Feb. 2025).
Language: English
Page range: 175 - 182
Submitted on: Jan 19, 2025
Accepted on: Feb 20, 2025
Published on: May 19, 2025
Published by: University of Oradea, Civil Engineering and Architecture Faculty
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Ivett-Greta Zsak, Monica Cristea, R. M. Pancu, A-H. Pescaru, S. Medeșan, Daniela Lucia Manea, published by University of Oradea, Civil Engineering and Architecture Faculty
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.