Have a personal or library account? Click to login
Application of Mobile Mapping System for a Modern Topography Cover

Application of Mobile Mapping System for a Modern Topography

Open Access
|Dec 2024

References

  1. Allred, B., Wishart, D., Martinez, L., Schomberg, H., Mirsky, S., Meyers, G., Elliott, J., & Charyton, C. (2018). Delineation of agricultural drainage pipe patterns using ground penetrating radar integrated with a real-time kinematic global navigation satellite system. Agriculture, 8(11), 167.
  2. Alsadik, B. (2021). Performance assessment of mobile laser scanning systems using Velodyne Hdl-32e. Surveying and Geospatial Engineering Journal, 1(1), 28–33. https://doi.org/10.38094/sgej116.
  3. Azam, A., Alshehri, A. H., Alharthai, M., El-Banna, M. M., Yosri, A. M., & Beshr, A. A. (2023). Applications of Terrestrial Laser Scanner in Detecting Pavement Surface Defects. Processes, 11(5), 1370.
  4. Banescu, A., Arseni, M., Georgescu, L. P., Rusu, E., & Iticescu, C. (2020). Evaluation of different simulation methods for analyzing flood scenarios in the Danube Delta. Applied Sciences, 10(23), 8327.
  5. Banescu, A., Georgescu, L. P., Rusu, E., & Iticescu, C. (2018). Use of GIS technology to support the navigation on the Danube River. International Conference on Traffic and Transport Engineering ICTTE Belgrade, 160–168.
  6. Bury, G., Sosnica, K., Borkowski, A., & Trznadel, L. (2016). Development of a mobile platform for interior laser scanning based on the terrestrial phase scanner. International Association of Geodesy (IAG), Commission 4 Symposium, Polland, Wroklow.
  7. Chan, T. O., Lichti, D. D., & Belton, D. (2013). Temporal Analysis and Automatic Calibration of the Velodyne HDL-32E LiDAR System. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, II-5-W2, 61–66. https://doi.org/10.5194/isprsannals-II-5-W2-61-2013.
  8. Chiang, K. W., Tsai, G.-J., & Zeng, J. C. (2021). Mobile Mapping Technologies. In W. Shi, M. F. Goodchild, M. Batty, M.-P. Kwan, & A. Zhang (Eds.), Urban Informatics (pp. 439–465). Springer. https://doi.org/10.1007/978-981-15-8983-6_25.
  9. Elhashash, M., Albanwan, H., & Qin, R. (2022). A Review of Mobile Mapping Systems: From Sensors to Applications. Sensors, 22(11), Article 11. https://doi.org/10.3390/s22114262.
  10. Feng, Y., Xiao, Q., Brenner, C., Peche, A., Yang, J., Feuerhake, U., & Sester, M. (2022). Determination of building flood risk maps from LiDAR mobile mapping data. Computers, Environment and Urban Systems, 93, 101759. https://doi.org/10.1016/j.compenvurbsys.2022.101759.
  11. Gressin, A., Cannelle, B., Mallet, C., & Papelard, J.-P. (2012). Trajectory-based registration of 3D LiDAR point clouds acquired with a mobile mapping system. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, I3, 117–122. https://doi.org/10.5194/isprsannals-I-3-117-2012.
  12. Jozkow, G., Wieczorek, P., Karpina, M., Walicka, A., & Borkowski, A. (2017). Performance evaluation of UAS equipped with Velodyne HDL-32e LiDAR sensor. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2-W6, 171–177. https://doi.org/10.5194/isprs-archives-XLII-2-W6-171-2017.
  13. Lichti, D. D., Jarron, D., Tredoux, W., Shahbazi, M., & Radovanovic, R. (2020). Geometric modelling and calibration of a spherical camera imaging system. The Photogrammetric Record, 35(170), 123–142. https://doi.org/10.1111/phor.12315.
  14. Ma, L., Li, Y., Li, J., Wang, C., Wang, R., & Chapman, M. A. (2018). Mobile laser scanned point-clouds for road object detection and extraction: A review. Remote Sensing, 10(10), 1531.
  15. Maslikhova, L. I., Hahulina, N. B., Sambulov, N. I., & Akimova, S. V. (2020). Analysis and Comparison of Technologies of Survey of Buildings and Structures for the Purpose of Obtaining a 3D Model. IOP Conference Series: Materials Science and Engineering, 753(3), 032061. https://doi.org/10.1088/1757-899X/753/3/032061.
  16. Puente, I., González-Jorge, H., Martínez-Sánchez, J., & Arias, P. (2013). Review of mobile mapping and surveying technologies. Measurement, 46(7), 2127–2145. https://doi.org/10.1016/j.measurement.2013.03.006.
  17. Qiu, Z., Martínez-Sánchez, J., Brea, V. M., López, P., & Arias, P. (2022). Low-cost mobile mapping system solution for traffic sign segmentation using Azure Kinect. International Journal of Applied Earth Observation and Geoinformation, 112, 102895. https://doi.org/10.1016/j.jag.2022.102895.
  18. Schaer, P., & Vallet, J. (2016). Trajectory adjustment of mobile laser scan data in GPS denied environments. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-3-W4, 61–64. https://doi.org/10.5194/isprs-archives-XL-3-W4-61-2016.
Language: English
Page range: 186 - 193
Submitted on: Apr 10, 2024
Accepted on: Jun 24, 2024
Published on: Dec 10, 2024
Published by: University of Oradea, Civil Engineering and Architecture Faculty
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 M. Arseni, O. Roman, C. Cucoara, L. P. Georgescu, published by University of Oradea, Civil Engineering and Architecture Faculty
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.