Have a personal or library account? Click to login
Punching of Concrete Slabs Reinforced by Recycling Waste Cover

Punching of Concrete Slabs Reinforced by Recycling Waste

By: K. Hassani,  D. Atlaoui and  Y. Bouafia  
Open Access
|May 2024

References

  1. Brandt, A. M., 2008. Fiber reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering, Compos. Struct. 86: 3-9.
  2. Syed Mohsin, S. M., 2012. Behaviour of Fibre-Reinforced Concrete Structures under Seismic Loading Doctoral dissertation (London: Imperial College London). pp: 46-50.
  3. Abbas, A. A. Syed Mohsin, S.M. Cotsovos, D.M., 2016A. Simplified finite element model for assessing steel fibre reinforced concrete structural performance, Comput. and Struct. 173: 31-49.
  4. Hannant, D. J., 2003. Fiber-reinforced concrete Advanced Concrete Technology –processes ed. J Newman and B S Choo (Oxford: Butterworth-Heinemann, Elsevier). 6:1-17.
  5. Cucchiara, C. La Mendola, L. Papia, M., 2006. Effectiveness of stirrups and steel fibres as shear reinforcement, Cement and Concrete Compos. 26: 777-786.
  6. Khaloo, A. R. Afshari, M., 2005. Flexural behaviour of small steel fibre reinforced concrete slabs, Cement and Concrete Compos. 27: 141-149.
  7. Juárez, C. Valdez, P. Durán, A. Sobolev, K., 2007. The diagonal tension behavior of fiber reinforced concrete, Cement and Concrete Compos. 29: 402-408.
  8. Ding, Y. You, Z. Jalali, S., 2001. The composite effect of steel fibres and stirrups on shear behaviour of beams using self-consolidating concrete, Eng. Struct. 33: 107-117.
  9. Minelli, F. Conforti, A. Cuenca, E. Plizzari, G., 2014. Are steel fibers able to mitigate or eliminate size effect in shear, Mater. Struct. 47: 459-473.
  10. Zia, A. Zhang, P. Holly, I., 2003. Experimental investigation of raw steel fibers derived from waste tires for sustainable concrete, Construction and Building Materials. 368 – 130410.
  11. Zia, A. Zhang, P. Holly, I. 2023. Effectiveness of hybrid discarded tire/Industrial steel fibers for improving the sustainability of concrete structures. Construction and Building Materials. 378 – 131226.
  12. Atlaoui, D. Bouafia, Y., 2017. Experimental characterization of concrete beams elements reinforced by long fiber chips. Journal of adhesion Science and Technology. vol 31, No 8: 844-857.
  13. Djebali, S. Atlaoui, D. Bouafia, Y., 2011. Caractérisation en traction direct du béton de fibres métalliques [Direct tensile characterization of metal fiber concrete]. Matériaux & Techniques [Mater. Tech.]. 327–338.
  14. Atlaoui, D. Bouafia, Y., 2008. Characterisation of the mechanical behaviour of fibers undulated in spirals resulting from waste of machining of steel parts, Second Euro Mediterranean Symposium on Advances in Geomaterials and Structures (AGS’08): Editions Sciences end Technologie. Yasmine Hammamet, Tunisie. 4: 741–746.
  15. Bouafia, Y. Kachi, M. S, Atlaoui, D., 2012. Study of mechanical behaviour of concrete in direct tensile fiber chips. Applied Mechanics Materials. 46: 64–73.
  16. Djebali, S. Bouafia, Y. Atlaoui, D., 2011. Study of mechanical behaviour of chips reinforced concrete. Adv. Mater. Res. 24: 360–363.
  17. Tadepalli, P.R. Mo, Y.Hsu, T.T., 2013. Mechanical properties of steel fiber concrete. Magazine of Concrete Research. 65(8): 462–474.
  18. Sorensen, C. Berge, E. Nikolaisen, E. B., 2014. Investigation of fiber distribution in concrete batches discharged from ready-mix truck. International Journal of Concrete Structures and Materials. 8(4): 279–287.
  19. Pereira, N. B. Barros, A. O. Camoes, A., 2008. Steel Fiber Reinforced Self Compacting Concrete: Experimental Research and Numerical Simulation, Journal of Structural Engineering ASCE, Vol 134, No.8 August; pp: 1310-1321.
  20. Wang, H. T. Wang, L. C., 2013. Experimental study on static and dynamic mechanical properties of steel fiber reinforced lightweight aggregate concrete, Constr. and Build. Mater. 38:1146-1151.
  21. Serbescu, A. Guadagnini, M. Pilakoutas, K., 2015. Mechanical Characterization of Basalt FRP Rebars and Long-Term Strength Predictive Model. Journal of Composites for Construction, Vol. 19, Iss. 2, article: 04014037.
  22. Fahmy, M. F. Wu, z. Wu, G., 2009. Seismic Performance Assessment of Damage-Controlled FRPRetrofitted RC Bridge Columns Using Residual Deformations. Journal of Composites for construction, Vol. 13, Iss. 6. pp:498513.
  23. Wu, G. Wang, X. Wu, Z. Dong, Z. Zhang, G., 2015. Durability of Basalt Fibers and Composites in Corrosive Environments. Journal of Composite Materials, Vol. 49, Iss. 7. pp: 873-887.
  24. Wang, X. Shi, J. We, G. Yang, L. We, Z., 2015. Effectiveness of Basalt FRP Tendons for Strengthening of RC Beams through the External Prestressing Technique. Engineering Structures, Vol. 101. pp: 34-44.
  25. El-ghandour, A. W. Pilakoutas, K. Waldron, P., 2003. Punching Shear Behavior of Fiber Reinforced Polymers Reinforced Concrete Flat Slabs: An Experimental Study. Journal of Composites for Construction, Vol. 7, Iss. 3, pp: 258-265.
  26. Ospina, C. E. Alexander, S. D. Cheng, J. R., 2003. Punching of Two-Way Concrete Slabs with Fiber Reinforced Polymer Reinforcing Bars or Grids. Structural Journal, Vol. 100, Iss. 5. pp: 589-598.
  27. Hussein, A. Rashid, I. Benmokrane, B., 2004. Two-Way Concrete Slabs Reinforced with GFRP Bars. Proceedings of 4th International Conference on Advanced Composite Materials in Bridges and Structures, CSCE. 4; 15 p.
  28. Lee, J. Yoon, Y. S. Cook, W. D. Mitchell, D., 2009. Improving Punching Shear Behavior of Glass Fiber Reinforced Polymer Reinforced Slabs. ACI Structural Journal, Vol. 106, Iss. 4. pp: 427-434.
  29. Hassan, M. Ahmed, E. Benmokrane, B., 2013. Punching-Shear Strength of Normal and HighStrength Two-Way Concrete Slabs Reinforced with GFRP Bars. Journal of composites for construction, Vol. 17, Iss. 6. 3; 12 p.
  30. Hassan, M. Ahmed, E. A., 2013. Benmokrane, B. Punching Shear Strength of Glass FiberReinforced Polymer Reinforced Concrete Flat Slabs. Canadian Journal of Civil Engineering, Vol. 40, Iss. 10. pp: 951 960.
  31. Trekin, N. Pekin, D., 2019. Experimental research of punching shear mechanism of reinforced concrete slab. EDP Sci. 97:1-12.
  32. Guo, H. Cheng, J., 2015. Punching shear capac ity analysis of reinforced concrete slab-column connections. 5th International Conference on Advanced Engineering Materials and Technology (AEMT 2015); Published by Atlantic Press. 244-248.
  33. Muttoni, A., 2008. Punching shear strength of reinforced concrete slabs without transverse reinforcement. ACI Struct J. July-August; 105(4): 440–450.
  34. Ebead, U. Marzouk, H., 2002. Strengthening of two-way slabs subjected to moment and cyclic loading. ACI Struct. J. 99: 435–444.
  35. NF EN196-6. AFNOR., 2018. Methods of Testing Cement-Determination of Fineness.
  36. Dreux, G. Festa, J., 2007. Nouveau guide du béton et de ses constituants, Huitième éditio 1998, Troisième tirage 2007. New guide to concrete and its constituents,Eighth edition 1998, Third printing. Eyrolles, France.
  37. Eurocode 2., 1992. Calcul des structure en béton Partie 1-1 règles générales et règles pour les bâtiments. Design of concrete structures Part 1-1: General rules and rules for buildings. ENV 1992-1-1, NF18711.
Language: English
Page range: 89 - 96
Submitted on: Dec 12, 2023
Accepted on: Jan 27, 2024
Published on: May 20, 2024
Published by: University of Oradea, Civil Engineering and Architecture Faculty
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 K. Hassani, D. Atlaoui, Y. Bouafia, published by University of Oradea, Civil Engineering and Architecture Faculty
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.