Have a personal or library account? Click to login
Numerical Study on the Seismic Performance of Hybrid Shear Walls with Centered Openings Cover

Numerical Study on the Seismic Performance of Hybrid Shear Walls with Centered Openings

Open Access
|Dec 2023

Abstract

The lateral resisting system comprised of hybrid shear walls is often met nowadays for high rise buildings, to reduce the lateral displacements of the building during a seismic event and to limit the damages of non-structural elements. In fact, “hybrid shear walls” term will replace the old terminology used for composite steel concrete shear walls. This structural system develops a very stable seismic behavior under cyclic lateral loads, but the seismic performance of the system could be significantly changed by the openings required for architectural or functional reasons. This paper presents in detail the seismic behavior of a composite steel-concrete shear wall designed with centered openings and partially embedded steel profiles in the edges. The composite wall was subjected to vertical and horizontal loads and tested to full failure using a cyclic loading testing procedure that simulated the action of an earthquake, aiming to record the seismic performance of the wall in terms of bearing capacity, deformation capacity, failure mode and stiffness degradation. The low-dissipative behavior recorded experimentally of the tested specimen was afterward validated and assessed in detail by performing numerical analyses using ATENA 3D Engineering software. The numerical results were extended to investigate furthermore other structural solutions to increase the bearing capacity and the seismic performance of the wall. It was found that a significant increase in deformation capacity could be obtained if the wall coupling beams are reinforced by diagonal steel bars or additional steel plates.

Language: English
Page range: 281 - 288
Submitted on: Aug 14, 2023
Accepted on: Sep 15, 2023
Published on: Dec 6, 2023
Published by: University of Oradea, Civil Engineering and Architecture Faculty
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2023 V. Todea, D. Dan, S.C. Floruț, V. Stoian, V.Ș. Popescu, published by University of Oradea, Civil Engineering and Architecture Faculty
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.