Aginam, C., Chidolue, C., of, C. N.-I. J., & 2013, undefined. (n.d.). Investigating the effects of coarse aggregate types on the compressive strength of concrete. Citeseer, 3, 1140–1144. Retrieved August 29, 2022, from https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.414.7556&rep=rep1&type=pdf.
Amin, N.-, & Ali, K. (2010). Chemical Analysis and Comparison of Ordinary Portland Cement of Khyber Pakhtoon Khwa Pakistan. Chemical Engineering Research Bulletin, 14(1). https://doi.org/10.3329/cerb.v14i1.4320.
Amin, N. U. & A. K. (2009). Recycling of bagasse ash in cement manufacturing and its impact on clinker potential and environmental pollution. Journal of the Chemical Society of Pakistan, 31, 361–367.
Asef, M. F., Ahmed, K. S., & Ahmed, M. (2022). Physical and Strength Properties of Cements Manufactured in Bangladesh: A Case Study. MIST INTERNATIONAL JOURNAL OF SCIENCE AND TECHNOLOGY, 10, 49–59. https://doi.org/10.47981/j.mijst.10(01)2022.319(49-59).
Celik, I. B. (2009). The effects of particle size distribution and surface area upon cement strength development. Powder Technology, 188(3), 272–276. https://doi.org/10.1016/j.powtec.2008.05.007.
Aginam, C., Chidolue, C., of, C. N.-I. J., & 2013, undefined. (n.d.). Investigating the effects of coarse aggregate types on the compressive strength of concrete. Citeseer, 3, 1140–1144. Retrieved August 29, 2022, from https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.414.7556&rep=rep1&type=pdf.
Amin, N.-, & Ali, K. (2010). Chemical Analysis and Comparison of Ordinary Portland Cement of Khyber Pakhtoon Khwa Pakistan. Chemical Engineering Research Bulletin, 14(1). https://doi.org/10.3329/cerb.v14i1.4320.
Amin, N. U. & A. K. (2009). Recycling of bagasse ash in cement manufacturing and its impact on clinker potential and environmental pollution. Journal of the Chemical Society of Pakistan, 31, 361–367.
Asef, M. F., Ahmed, K. S., & Ahmed, M. (2022). Physical and Strength Properties of Cements Manufactured in Bangladesh: A Case Study. MIST INTERNATIONAL JOURNAL OF SCIENCE AND TECHNOLOGY, 10, 49–59. https://doi.org/10.47981/j.mijst.10(01)2022.319(49-59).
Celik, I. B. (2009). The effects of particle size distribution and surface area upon cement strength development. Powder Technology, 188(3), 272–276, https://doi.org/10.1016/j.powtec.2008.05.007.
Ghosh, S. (2014). Advances in cement technology: critical reviews and case studies on manufacturing, quality control, optimization, and use (Elsevier, Ed.).
H. Kemer, R. Bouras, N. Mesboua, M. Sonebi, & O. Kinnane. (2021). Shear-thickening behavior of sustainable cement paste—Controlling physical parameters of new sources of supplementary cementitious materials. Construction and Building Materials, 310, 125–277.
Karakaş, A. (2020). M. R. Smith and L. Collis (eds): Aggregates: sand, gravel, and crushed rock aggregates for construction purposes (3rd edition). Arabian Journal of Geosciences, 13(1), 11. https://doi.org/10.1007/s12517-019-4975-y.
Mohammed, T. U., Hasnat, A., Sharkia, S., Hasan, P., Islam, B. K. M. A., & Sharkia, S. (n.d.). Advancing and Integrating Construction Education, Research & Practice. https://www.researchgate.net/publication/220018676.
Muhammad Adil Sultan, M jawad, Slah Uddin, Dr Shahn cheema, & Aamir mushtaq. (2023). Analysis of the Chemical Compositions of Locally Branded Manufactured Cement of Pakistan. Ecological Engineering \& Environmental Technology, 24(3).
N. Mesboua, K. Benyounes, S. Kennouche, Y. Ammar, A. Benmounah, & H.Kemer. (2021). Calcinated Bentonite as Supplementary Cementitious Materials in Cement-Based Mortar. Journal of Applied Engineering Sciences, 11(1), 23–32.