Abbas, S., Soliman, A., Nehdi, M., Bai, J., Wild, S., Sabir, B. B., Tasdemir, C., Li, Z., Zhang, H., Wang, R., Office, J., Commissioner, A., Chen, Y., Matalkah, F., Yu, Y., Rankothge, W., Balachandra, A., Soroushian, P., Herald Lessly, S., … Wang, H. H. (2017). Influence of steel fiber distribution on splitting damage and transport properties of ultra-high performance concrete. Construction and Building Materials, 45(10), 104373. https://doi.org/10.1016/j.cemconcomp.2021.104373.10.1016/j.cemconcomp.2021.104373
Aldahdooh, M. A. A., Muhamad Bunnori, N., & Megat Johari, M. A. (2013). Development of green ultra-high performance fiber reinforced concrete containing ultrafine palm oil fuel ash. Construction and Building Materials, 48, 379–389. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2013.07.007.10.1016/j.conbuildmat.2013.07.007
Armelin, H. S., & Banthia, N. (1997). Predicting the flexural postcracking performance of steel fiber reinforced concrete from the pullout of single fibers. ACI Materials Journal, 94(1), 18–31. https://doi.org/10.14359/281.10.14359/281
Arora, A., Aguayo, M., Hansen, H., Castro, C., Federspiel, E., Mobasher, B., & Neithalath, N. (2018). Microstructural packing- and rheology-based binder selection and characterization for Ultra-high Performance Concrete (UHPC). Cement and Concrete Research, 103, 179–190. https://doi.org/10.1016/j.cemconres.2017.10.013.10.1016/j.cemconres.2017.10.013
Association Française de Génie Civil (AFGC). (2002). Service d’études techniques des routes et autoroutes Association Française de Génie Civil. Recommandations Provisoires, Janvier, France, 2002.
ASTM C 109/C 109M-21. (2021). Standard test method for compressive strength of hydraulic cement mortars. Annual Book of ASTM Standards, 04, 9. https://www.astm.org/c0109_c0109m-21.html.
ASTM C1202. (2012). Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration. American Society for Testing and Materials., C, 1–8. https://doi.org/10.1520/C1202-12.2.
ASTM C1856 / C1856M-17. (2017). Standard Practice for Fabricating and Testing Specimens of Ultra-High Performance Concrete. In ASTM International, West Conshohocken, PA.
ASTM C989. (2005). Standard Specification for Ground Granulated Blast-Furnace Slag for Use in Concrete and Mortars. ASTM International, i(February), 2–6. www.astm.org.
Bache, H. (1981). Densified Cements Ultra-Fine Particle-Based Materials. Proceedings of the 2nd International Conference on Super Plasticizers in Concrete.
Basheer, P. A. M. (2002). Monitoring electrical resistance of concretes containing alternative cementitious materials to assess their resistance to chloride penetration. 24, 437–449.10.1016/S0958-9465(01)00075-0
Biswas, R., Rai, B., & Samui, P. (2021). Compressive strength prediction model of high-strength concrete with silica fume by destructive and non-destructive technique. Innovative Infrastructure Solutions, 6(2), 41062. https://doi.org/10.1007/s41062-020-00447-z.10.1007/s41062-020-00447-z
Çakır, Ö., & Aköz, F. (2008). Effect of curing conditions on the mortars with and without GGBFS. Construction and Building Materials, 22(3), 308–314. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2006.08.013.10.1016/j.conbuildmat.2006.08.013
El-Helou RG, M. C. and C. G. (2014). Ultra-High Performance Fiber-Reinforced Concrete: Extensive Material Characterization, Model Validation, and Structural Simulations. Presentation at ACI Fall 2014 Convention, Washington, DC.
Fehling, E., Schmidt, M., & Stuerwald, S. (2008). Second International Symposium on Ultra High Performance Concrete. Second International Symposium on Ultra High Performance Concrete, 902.
Feret, R. (1892). On the compactness of hydraulic mortars. Memoirs and documents relating to the art of constructions at the service of the engineer. Annales Des Ponts and Chaussées, 2nd semest, 5–161.
Ghafari, E., Costa, H., Julio, E., Portugal, A., & Duraes, L. (2012). Optimization of UHPC by adding nanomaterials. In Proceedings of the 3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials. Kassel, Germany, 71–78.
Ghafari, E., Costa, H., Júlio, E., Portugal, A., & Durães, L. (2014). The effect of nanosilica addition on flowability, strength and transport properties of ultra high performance concrete. Materials and Design, 59(January), 1–9. https://doi.org/10.1016/j.matdes.2014.02.051.10.1016/j.matdes.2014.02.051
Granger, S., Loukili, A., Pijaudier-Cabot, G., & Chanvillard, G. (2007). Experimental characterization of the self-healing of cracks in an ultra high performance cementitious material: Mechanical tests and acoustic emission analysis. Cement and Concrete Research, 37(4), 519–527. https://doi.org/10.1016/j.cemconres.2006.12.005.10.1016/j.cemconres.2006.12.005
Gray, R. J., & Johnston, C. D. (1987). The influence of fibre-matrix interfacial bond strength on the mechanical properties of steel fibre reinforced mortars. International Journal of Cement Composites and Lightweight Concrete, 9(1), 43–55. https://doi.org/10.1016/0262-5075(87)90036-4.10.1016/0262-5075(87)90036-4
Graybeal, B. A., & Russel, H. G. (2013). Ultra-High Performance Concrete: A State-of-the-Art Report for the Bridge Community. Publication No. FHWA-HRT-13-060. June, 176.
Harish, K. V., Dattatreya, J. K., & Neelamegam, M. (2013). Experimental investigation and analytical modeling of the σ-ε Characteristics in compression of heat-treated ultra-high strength mortars produced from conventional materials. Construction and Building Materials, 49, 781–796. https://doi.org/10.1016/j.conbuildmat.2013.08.068.10.1016/j.conbuildmat.2013.08.068
Hassan, A. M. T., Jones, S. W., & Mahmud, G. H. (2012). Experimental test methods to determine the uniaxial tensile and compressive behaviour of Ultra High Performance Fibre Reinforced Concrete(UHPFRC). Construction and Building Materials, 37, 874–882. https://doi.org/10.1016/j.conbuildmat.2012.04.030.10.1016/j.conbuildmat.2012.04.030
Heinz, D., & Ludwig, H.-M. (2004). Heat Treatment and the Risk of DEF Delayed Ettringite Formation in UHPC. International Symposium on Ultra High Performance Concrete, 717–730.
Herold, G., & Muller, H. (2004). Measurement of porosity of ultra-high strength fibre reinforced concrete. In Proceedings of the International Symposium on Ultra-High Performance Concrete, 685–694.
Huang, W., Kazemi-Kamyab, H., Sun, W., & Scrivener, K. (2017). Effect of replacement of silica fume with calcined clay on the hydration and microstructural development of eco-UHPFRC. Materials & Design, 121, 36–46. https://doi.org/https://doi.org/10.1016/j.matdes.2017.02.052.10.1016/j.matdes.2017.02.052
Lavanya Prabha, S. (2010). Study on Stress-Strain Properties of Reactive Powder Concrete Under Uniaxial Compression. International Journal of Engineering Science and Technology, 2(11), 6408–6416.
Le Hoang, A., & Fehling, E. (2017). Analysis of circular steel tube confined UHPC stub columns. Steel and Composite Structures, 23(6), 669–682. https://doi.org/10.12989/scs.2017.23.6.669.
Liu, J., Tang, K., Qiu, Q., Pan, D., Lei, Z., & Xing, F. (2014). Experimental investigation on pore structure characterization of concrete exposed to water and chlorides. In Materials (Vol. 6, Issue 9, pp. 6646–6659). https://doi.org/10.3390/ma7096646.10.3390/ma7096646545614028788204
Lowke, D., Stengel, T., Schießl, P., & Gehlen, C. (2012). Control of Rheology, Strength and Fibre Bond of UHPC with Additions–Effect of Packing Density and Addition Type. Hipermat, 215.
Mandel, J. A., Wei, S., & Said, S. (1987). Studies of the Properties of the Fiber-Matrix Interface in Steel Fiber Reinforced Mortar. ACI Materials Journal, 84(2), 101–109. https://doi.org/10.14359/1815.10.14359/1815
Medina, N. F., Medina, D. F., Hernández-Olivares, F., & Navacerrada, M. A. (2017). Mechanical and thermal properties of concrete incorporating rubber and fibres from tyre recycling. Construction and Building Materials, 144, 563–573. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2017.03.196.10.1016/j.conbuildmat.2017.03.196
Mehta, P. K. (1983). Pozzolanic and Cementitious Byproducts As Mineral Admixtures for Concrete - a Critical Review. Publication SP - American Concrete Institute, 1, 1–46.
Metin, I., Kemalettin, Y., Mansur, S., & Mehmet, S. (2011). Effect of pre-setting pressure applied to mechanical behaviours of reactive powder concrete during setting phase. Construction and Building Materials, 25(1), 61–68.10.1016/j.conbuildmat.2010.06.056
Naaman, A. E. (2003). Engineered Steel Fibers with Optimal Properties for Reinforcement of Cement Composites. Journal of Advanced Concrete Technology, 1(3), 241–252. https://doi.org/10.3151/jact.1.241.10.3151/jact.1.241
Nammur, G., & Naaman, A. E. (1989). Bond stress model for fiber reinforced concrete based on bond stress-slip relationship. ACI Materials Journal, 86(1), 45–57. https://doi.org/10.14359/1845.10.14359/1845
O’Neil, E. F., Neeley, B. D., & Cargile, J. D. (2001). Tensile properties of very high-strength Concrete for penetration Resistant structures. Shock and Vibration.
Odler, I., & Rößler, M. (1985). Investigations on the relationship between porosity, structure and strength of hydrated Portland cement pastes. II. Effect of pore structure and of degree of hydration. Cement and Concrete Research, 15(3), 401–410. https://doi.org/https://doi.org/10.1016/0008-8846(85)90113-9.10.1016/0008-8846(85)90113-9
Orange, G., Dugat, J., & Acker, P. (1999). A new generation of UHP concrete: Ductal®. Damage resistance and micromechanical analysis. Proc. of the 3d Int. RILEM Workshop, 101–111. https://books.google.fr/books?id=LSlfn0kI0u0C&pg=PA101&lpg=PA101&dq=A+new+generation+of+UHP+concrete:+Ductal®&source=bl&ots=uXqiFGUMbn&sig=ACfU3U2Ff24mUDOA9YaCgzvZpY4nwmHEJg&hl=en&sa=X&ved=2ahUKEwiSISkxqboAhUkz4UKHcVkCDMQ6AEwBHoECAsQAQ#v=onepage&q=A new.
Ozawa, M., Subedi Parajuli, S., Uchida, Y., & Zhou, B. (2019). Preventive effects of polypropylene and jute fibers on spalling of UHPC at high temperatures in combination with waste porous ceramic fine aggregate as an internal curing material. Construction and Building Materials, 206, 219–225. https://doi.org/10.1016/j.conbuildmat.2019.02.056.10.1016/j.conbuildmat.2019.02.056
Özbay, E., Erdemir, M., & Durmuş, H. İ. (2016). Utilization and efficiency of ground granulated blast furnace slag on concrete properties – A review. Construction and Building Materials, 105, 423–434. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2015.12.153.10.1016/j.conbuildmat.2015.12.153
Piérard, J., Donms, B., & Cauberg, N. (2012). Evaluation of durability parameters of UHPC using accelerated lab tests. Proceedings of Hipermat 2012 3rd International Symposium On UHPC and Nanotechnology For High Performance Construction Materials, 371–376.
Rai, B., & Singh, N. K. (2021). Statistical and experimental study to evaluate the variability and reliability of impact strength of steel-polypropylene hybrid fiber reinforced concrete. Journal of Building Engineering, 44(July), 102937. https://doi.org/10.1016/j.jobe.2021.102937.10.1016/j.jobe.2021.102937
Rao, G. A. (2003). Investigations on the performance of silica fume-incorporated cement pastes and mortars. Cement and Concrete Research, 33(11), 1765–1770. https://doi.org/https://doi.org/10.1016/S0008-8846(03)00171-6.10.1016/S0008-8846(03)00171-6
Rashad, A. M., & Sadek, D. M. (2017). An investigation on Portland cement replaced by high-volume GGBS pastes modified with micro-sized metakaolin subjected to elevated temperatures. International Journal of Sustainable Built Environment, 6(1), 91–101. https://doi.org/https://doi.org/10.1016/j.ijsbe.2016.10.002.10.1016/j.ijsbe.2016.10.002
Rebentrost M., W. G. (2008). Experience and applications of ultra-high performance concrete in Asia. Proceedings of the Second International Symposium on Ultra High Performance Concrete, 11.
Ríos, J. D., Cifuentes, H., Leiva, C., & Seitl, S. (2019). Analysis of the mechanical and fracture behavior of heated ultra-high-performance fiber-reinforced concrete by X-ray computed tomography. Cement and Concrete Research, 119, 77–88. https://doi.org/10.1016/j.cemconres.2019.02.015.10.1016/j.cemconres.2019.02.015
ROUGEAU, P., & B.B. (2004). Ultra-high-performance concrete with ultrafine particles other than silica fume. In Proceedings of the fib Symposium 2004 - Concrete Structures: The Challenge of Creativity (Issue 3).
Rougeau, P., & Borys, B. (2004). Ultra high performance concrete with ultrafine particles other than silica fume. Proceedings of the International Symposium on Ultra High Performance Concrete, Kassel, Germany, 213-226.
Roy, D. M., & Idorn, G. M. (1982). Hydration, Structure, and Properties of Blast Furnace Slag Cements, Mortars, and Concrete. J Am Concr Inst, V 79(N 6), 444–457. https://doi.org/10.14359/10919.10.14359/10919
Schmidt, G. A., Jungclaus, J. H., Ammann, C. M., Bard, E., Braconnot, P., Crowley, T. J., Delaygue, G., Joos, F., Krivova, N. A., Muscheler, R., Otto-Bliesner, B. L., Pongratz, J., Shindell, D. T., Solanki, S. K., Steinhilber, F., & Vieira, L. E. A. (2012). Climate forcing reconstructions for use in PMIP simulations of the Last Millennium (v1.1). Geoscientific Model Development, 5(1), 185–191. https://doi.org/10.5194/gmd-5-185-2012.10.5194/gmd-5-185-2012
Schmidt, M., & Teichmann, T. (2007). Development of an ultra high performance concrete for the company SW Umwelttechnik. Final report, Kassel, Germany.
Soliman, N. A., & Tagnit-Hamou, A. (2016). Development of ultra-high-performance concrete using glass powder – Towards ecofriendly concrete. Construction and Building Materials, 125, 600–612, https://doi.org/https://doi.org/10.1016/j.conbuildmat.2016.08.073.10.1016/j.conbuildmat.2016.08.073
Tafraoui, A., Escadeillas, G., Lebaili, S., & Vidal, T. (2009). Metakaolin in the formulation of UHPC. Construction and Building Materials, 23(2), 669–674. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2008.02.018.10.1016/j.conbuildmat.2008.02.018
Tayeh, B. A., Abu Bakar, B. H., Megat Johari, M. A., & Voo, Y. L. (2012). Mechanical and permeability properties of the interface between normal concrete substrate and ultra high performance fiber concrete overlay. Construction and Building Materials, 36, 538–548. https://doi.org/10.1016/j.conbuildmat.2012.06.013.10.1016/j.conbuildmat.2012.06.013
Van Tuan, N., Ye, G., van Breugel, K., Fraaij, A. L. A., & Bui, D. D. (2011). The study of using rice husk ash to produce ultra high performance concrete. Construction and Building Materials, 25(4), 2030–2035, https://doi.org/https://doi.org/10.1016/j.conbuildmat.2010.11.046.10.1016/j.conbuildmat.2010.11.046
Wang, C., Zhou, S., Wang, B., … P. G.-G. and, & 2016, U. (2016). Settlement behavior and controlling effectiveness of two types of rigid pile structure embankments in high-speed railways. Geomech Eng, 11, 847–865.10.12989/gae.2016.11.6.847
Wang, D., Shi, C., Wu, Z., Xiao, J., Huang, Z., & Fang, Z. (2015a). A review on ultra high performance concrete: Part II. Hydration, microstructure and properties. Construction and Building Materials, 96, 368–377. http://dx.doi.org/10.1016/j.conbuildmat.2015.10.088.10.1016/j.conbuildmat.2015.10.088
Wang, D., Shi, C., Wu, Z., Xiao, J., Huang, Z., & Fang, Z. (2015b). A review on ultra high performance concrete: Part II. Hydration, microstructure and properties. Construction and Building Materials, 96, 368–377.10.1016/j.conbuildmat.2015.08.095
Wang, X. H., Jacobsen, S., He, J. Y., Zhang, Z. L., Lee, S. F., & Lein, H. L. (2009). Application of nanoindentation testing to study of the interfacial transition zone in steel fiber reinforced mortar. Cement and Concrete Research, 39(8), 701–715. https://doi.org/10.1016/j.cemconres.2009.05.002.10.1016/j.cemconres.2009.05.002
Wang, Y., Li, V. C., & Backer, S. (1988a). Analysis of synthetic fiber pullout from a cement matrix. Bond- ing in Cementitious Composites. MRS Symposium. Proc., 114, 159–165.10.1557/PROC-114-159
Werner, O. R., Scali, M. J., Rose, J. H., Aitcin, P. C., Abdun-Nur, E. A., Ashby, J. B., Bell, L. W., Best, F. J., Brenno, G. L., Butler, B. W., Call, B., Carrasquillo, R. L., Cook, J. E., Deno, D. W., & Deckman, J. T. (1987). Ground Granulated Blast-Furnace Slag As a Cementitious Constituent in Concrete. ACI Materials Journal, 84(4), 327–342. https://doi.org/10.14359/1623.10.14359/1623
Wille, K., & Naaman, A. E. (2012). Pullout behavior of high-strength steel fibers embedded in ultra-high-performance concrete. ACI Materials Journal, 109(4), 479–488. https://doi.org/10.14359/51683923.10.14359/51683923
Yan, P. Y., & Feng, J. W. (2008). Mechanical Behaviour of UHPC and UHPC Filled Steel Tubular Stub Columns. Proceedings of the International Symposium on Ultra High Performance Concrete of the Second International Symposium on Ultra High Performance Concrete, 355–364.
Yang, J., Wang, Q., & Zhou, Y. (2017). Influence of Curing Time on the Drying Shrinkage of Concretes with Different Binders and Water-to-Binder Ratios. Advances in Materials Science and Engineering. https://doi.org/10.1155/2017/2695435.10.1155/2017/2695435
Yoo, D. Y., & Yoon, Y. S. (2016). A Review on Structural Behavior, Design, and Application of Ultra-High-Performance Fiber-Reinforced Concrete. International Journal of Concrete Structures and Materials, 10(2), 125–142. https://doi.org/10.1007/s40069-016-0143-x.10.1007/s40069-016-0143-x
Yu, Z. R., Gao, K., An, M. Z., & Han, S. (2013). Influence of micro-structure on the strength and resistance to chloride ion permeability of reactive powder concrete. Xi’an Jianzhu Keji Daxue Xuebao/Journal of Xi’an University of Architecture and Technology, 45(1), 31–37.