References
- Alsalman, A., Dang, C. N., Prinz, G. S., & Hale, W. M. (2017). Evaluation of modulus of elasticity of ultra-high performance concrete. Construction and Building Materials, 153, pp. 918-928, https://doi.org/10.1016/j.conbuildmat.2017.07.158.10.1016/j.conbuildmat.2017.07.158
- Au, F. T., & Du, J. S. (2008). Deformability of concrete beams with unbonded FRP tendons. Engineering structures, 30(12), pp. 3764-3770, https://doi.org/10.1016/j.engstruct.2008.07.003.10.1016/j.engstruct.2008.07.003
- Bilir, T. (2016). Investigation of performances of some empirical and composite models for predicting the modulus of elasticity of high strength concretes incorporating ground pumice and silica fume. Construction and Building Materials, 127, pp. 850-860, https://doi.org/10.1016/j.conbuildmat.2016.10.054.10.1016/j.conbuildmat.2016.10.054
- Benamara, D., Mezghiche, B., & Zohra, M. F. (2014). The deformability of a high performance Concrete (HPC). Physics Procedia, 55, pp. 342-347, https://doi.org/10.1016/j.phpro.2014.07.050.10.1016/j.phpro.2014.07.050
- Benmessaoud, S., Mezghiche, B. (2011). Déformabilité et module d’élasticité des bétons à hautes performances. Université Mohamed Khider – Biskra, Algérie.
- Bogue RH. Chemistry of Portland cement, 1955. 2nd Ed. New York: Reinhold Publishing Corp; pp. 790.
- Brooks, J. (2014). Concrete and masonry movements. Butterworth-Heinemann.10.1016/B978-0-12-801525-4.00012-1
- Chen, X., Sierens, Z., Vandevyvere, B., & Li, J. (2019). Experimental Study on the Optimization of Crushed Limestone Sand as Partial Replacement of Sea Sand in Concrete. In Proceedings of iiSBE Forum of Young Researchers in Sustainable Building (YRSB19) pp. 25-34.
- Dupain, R., Lanchon, R., & Saint-Arroman, J. C. (2000). Granulats, sols, ciments et bétons. Edition Casteilla.
- Karapetyan, K. (2019). Specificity of Deformation and Strength Behavior of Massive Elements of Concrete Structures in a Medium with Low Humidity. Butterworth-Heinemann, https://doi.org/10.1016/C2017-0-01105-9.10.1016/C2017-0-01105-9
- Khouadjia, M. L. K., Mezghiche, B., & Drissi, M. (2015). Experimental evaluation of workability and compressive strength of concrete with several local sand and mineral additions. Construction and Building Materials, 98, pp. 194-203, https://doi.org/10.1016/j.conbuildmat.2015.08.081.10.1016/j.conbuildmat.2015.08.081
- Khouadjia, M. L. K. (2016). Etude des propriétés physicomécaniques et rhéologiques des bétons à base des sables de carrières: expérimentation et modélisation (Doctoral dissertation, Université Mohamed Khider-Biskra).
- Kocab, D., Kucharczykova, B., Misak, P., Zitt, P., & Kralikova, M. (2017). Development of the elastic modulus of concrete under different curing conditions. Procedia engineering, 195, pp.96-101, https://doi.org/10.1016/j.proeng.2017.04.529.10.1016/j.proeng.2017.04.529
- Malaikah, A. S. (2005). A proposed relationship for the modulus of elasticity of high strength concrete using local materials in Riyadh. Journal of King Saud University-Engineering Sciences, 17(2), pp.131-141, https://doi.org/10.1016/S1018-3639(18)30804-3.10.1016/S1018-3639(18)30804-3
- Mezghiche, B. (1989). Technologie des bétons aux laitiers basiques pour RADP”. Thèse de doctorat en sciences techniques. Institut de minerais de Krivoi Rog, pp.163.
- Mezghiche, B. (2005). Laboratory Testing of Construction Materials, Publication of the University of Biskra, Algeria, p. 120.
- Nematzadeh, M., & Naghipour, M. (2012). Compressive strength and modulus of elasticity of freshly compressed concrete. Construction and building materials, 34, pp. 476-485. https://doi.org/10.1016/j.conbuildmat.2012.02.055.10.1016/j.conbuildmat.2012.02.055
- Parra, C., Valcuende, M., & Gómez, F. (2011). Splitting tensile strength and modulus of elasticity of self-compacting concrete. Construction and Building materials, 25(1), pp. 201-207, https://doi.org/10.1016/j.conbuildmat.2010.06.037.10.1016/j.conbuildmat.2010.06.037
- Sarıdemir, M. (2013). Effect of silica fume and ground pumice on compressive strength and modulus of elasticity of high strength concrete. Construction and Building Materials, 49, pp. 484-489, https://doi.org/10.1016/j.conbuildmat.2013.08.091.10.1016/j.conbuildmat.2013.08.091
- Silva, R. V., De Brito, J., & Dhir, R. K. (2016). Establishing a relationship between modulus of elasticity and compressive strength of recycled aggregate concrete. Journal of Cleaner Production, 112, pp. 2171-2186, https://doi.org/10.1016/j.jclepro.2015.10.064.10.1016/j.jclepro.2015.10.064
- Vakhshouri, B., & Nejadi, S. (2019). Empirical models and design codes in prediction of modulus of elasticity of concrete. Frontiers of Structural and Civil Engineering, 13(1), pp. 38-48, https://doi.org/10.1007/s11709-018-0479-1.10.1007/s11709-018-0479-1
- Yıldırım, H., & Sengul, O. (2011). Modulus of elasticity of substandard and normal concretes. Construction and building materials, 25(4), pp.1645-1652, https://doi.org/10.1016/j.conbuildmat.2010.10.009.10.1016/j.conbuildmat.2010.10.009
- Zhou, K. J. H., Ho, J. C. M., & Su, R. K. L. (2011). Flexural strength and deformability design of reinforced concrete beams. Procedia engineering, 14, pp.1399-1407, https://doi.org/10.1016/j.proeng.2011.07.176.10.1016/j.proeng.2011.07.176