References
- Akagawa, S., Satoh, M., Kanie, S., Mikami, T., 2006. Effect of Tensile Strength on Ice Lens Initiation Temperature. In: 13th International Conference on Cold Regions Engineering, July 23-26, 2006, Orono, Maine, United States, pp. 1-12. https://doi.org/10.1061/40836(210)43.10.1061/40836(210)43
- Arenson, L. U., Xia, D., Sego, D. C., Biggar, K. W. 2006. Change in Ice Lens Formation for Saline and Non-Saline Devon Silt as a Function of Temperature and Pressure. In: 13th International Conference on Cold Regions Engineering. July 23-26, 2006, Orono, Maine, United States. https://doi.org/10.1061/9780784482469.049.10.1061/9780784482469.049
- Brown, W. G., 1965. Frost Heave in Ice Rinks and Cold Storage Buildings, CBD-61, Research Council Canada. https://doi.org/10.4224/40000839.
- Chen, D. H., Scullion, T., Hong, F., Lee, J., 2012. Pavement Swelling and Heaving at State Highway 6. Journal of Performance of Constructed Facilities, 26(3), pp. 335-344. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000237.10.1061/(ASCE)CF.1943-5509.0000237
- Chen, J., Li, A., Bao, C., Dai, Y., Liu, M., Lin, Z., Niu, F., Zhou, T., 2021. A deep learning forecasting method for frost heave deformation of high-speed railway subgrade. Cold Regions Science and Technology, 185, pp. 103265. https://doi.org/10.1016/j.coldregions.2021.103265.10.1016/j.coldregions.2021.103265
- Crowther, G. S., 2015. Lateral Pile Analysis Frozen Soil Strength Criteria. Journal of Cold Regions Engineering, 29(2): 04014011. https://doi.org/10.1061/(ASCE)CR.1943-5495.0000078.10.1061/(ASCE)CR.1943-5495.0000078
- Dahlin T., Svensson M., Lindh P. DC Resistivity and SASW for Validation of Efficiency in Soil Stabilisation Prior to Road Construction. In Procs. EEGS’99, 1999.10.3997/2214-4609.201406466
- Darrow, M. M., Huang, S. L., Shur, Y., Akagawa, S., 2008. Improvements in Frost Heave Laboratory Testing of Fine-Grained Soils. Journal of Cold Regions Engineering, 22(3), 65-78. https://doi.org/10.1061/(ASCE)0887-381X(2008)22:3(65).10.1061/(ASCE)0887-381X(2008)22:3(65)
- Deprez, M., De Kock, T., De Schutter, G., Cnudde, V., 2020. A review on freeze-thaw action and weathering of rocks. Earth-Science Reviews 203, pp. 103143. https://doi.org/10.1016/j.earscirev.2020.103143.10.1016/j.earscirev.2020.103143
- Dirksen, C., 1964. Water Movement and Frost Heaving in Unsaturated Soil without an External Source of Water, Ph. D. thesis, Cornell University, United States – New York, 152 pp.
- Duncan C.I. (1992) Physical Properties of Soils. In: Soils and Foundations for Architects and Engineers. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6545-8_2.10.1007/978-1-4757-6545-8_2
- Ferris, G., 2009. Differential Frost Heave at Pipeline-Road Crossings. In: 14th Conference on Cold Regions Engineering, August 31 – September 2, 2009, Duluth, Minnesota, United States, pp. 68-78. https://doi.org/10.1061/41072(359)9.10.1061/41072(359)9
- Guymon, G. L., Berg, R. L., Hromadka, T. V., 1993. Mathematical Model of Frost Heave and Thaw Settlement in Pavements, US Army Corps Cold Regions Research & Engineering Laboratory, 130 pp.
- Hagerty, D. J., Peck, R. B., 1971. Heave and Lateral Movements due to Pile Driving. ASCE Soil Mechanics and Foundation Division Journal 97(11), pp. 1513-1532. https://doi.org/10.1061/JSFEAQ.0001700.10.1061/JSFEAQ.0001700
- Hayashi, M., Goeller, N., Quinton, W. L., Wright, N., 2007. A simple heat-conduction method for simulating the frost-table depth in hydrological models. Hydrological Processes, 21, pp. 2610–2622. https://doi.org/10.1002/hyp.6792.10.1002/hyp.6792
- Houston, S. L., Houston, W. N., 2017. Suction-Oedometer Method for Computation of Heave and Remaining Heave. In: Second Pan-American Conference on Unsaturated Soils. November 12–15, 2017, Dallas, Texas, United States. pp. 93-116. https://doi.org/10.1061/9780784481677.005.10.1061/9780784481677.005
- Huang, S. L., Bray, M. T., Akagawa, S., Fukuda, M., 2004. Field Investigation of Soil Heave by a Large Diameter Chilled Gas Pipeline Experiment, Fairbanks, Alaska. Journal of Cold Regions Engineering, 18(1), 2-34. https://doi.org/10.1061/(ASCE)0887-381X(2004)18:1(2).10.1061/(ASCE)0887-381X(2004)18:1(2)
- Jackson, K. A., Uhlmann, D. R., Chalmers, B. 1966. Frost Heave in Soils. Journal of Applied Physics 37(2), pp. 848 – 852. https://doi.org/10.1063/1.1708270.10.1063/1.1708270
- Jame, Y.: Heat and Mass Transfer in Freezing Unsaturated Soil, Ph. D. thesis, The University of Saskatchewan, Canada, 212 pp., 1978.
- Ketcham, S. A., Black, P. B., Pretto, R., 1997. Frost Heave Loading of Constrained Footing by Centrifuge Modeling. Journal of Geotechnical and Geoenvironmental Engineering, 123(9), pp. 874-880. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:9(874).10.1061/(ASCE)1090-0241(1997)123:9(874)
- Klaučo, M., Gregorová, B., Stankov, U., Marković, V., Lemenkova, P., 2013. Determination of ecological significance based on geostatistical assessment: a case study from the Slovak Natura 2000 protected area. Open Geosciences, 5(1), pp. 28–42. https://doi.org/10.2478/s13533-012-0120-0.10.2478/s13533-012-0120-0
- Konrad, J. M., 1980. Frost heave mechanics. Ph. D. thesis. Canada, Department of Civil Engineering, University of Alberta, Edmonton, Canada, 472 pp. https://doi.org/10.7939/R3WP9TH3B.
- Konrad, J. M. 1994. Sixteenth Canadian geotechnical colloquium: frost heave in soils: concepts and engineering, Canadian Geotechnical Journal, 31(2), pp. 223–245. https://doi.org/10.1139/t94-028.10.1139/t94-028
- Lein, W. A., Slone, S. M., Smith, C. E., Bernier, A. P., 2019. Frost Depth Penetration and Frost Heave in Frost Susceptible Soils. In: International Airfield and Highway Pavements Conference: Testing and Characterization of Pavement Materials, July 21–24, 2019, Chicago, Illinois, U.S., pp. 493-503. https://doi.org/10.1061/9780784482469.049.10.1061/9780784482469.049
- Lemenkov, V. A., 2018a. Determination of correlation in deformation, strength and viscosity of the frozen soils through external pressure by uniaxial compression. In: Current Trends and Innovations in Science and Industry, Mezhdurechensk, Russia, 24-25 April 2018. pp. 64–65. https://doi.org/10.5281/zenodo.3832280.
- Lemenkov, V. A. 2018b. Variations in porosity and deformation in dehydrated loam samples. In: Development Strategy of the Geological Exploration of the Subsoils: Present and Future, Moscow, Russia, 2018, 2, pp. 256–257. https://doi.org/10.5281/zenodo.3832310.
- Lemenkov, V. A., 2018c. Perspective methods for determining deformation of the frozen dispersed soils under external loads. In: Problems of the Arctic Region, Murmansk, Russia, pp. 29-30. https://doi.org/10.5281/zenodo.3832332.
- Lemenkov, V. A. 2018d. Analysis of the Effects of the Mineral Soil Composition on the Cohesion Between its Structural Elements. In: Modern Solutions to Scientific and Industrial Problems in Chemistry and Petrochemistry, Kazan, Russia, 2018. pp. 617–625. https://doi.org/10.5281/zenodo.3832326.
- Lemenkov, V. A. 2018e. Deformation properties of the clay soil heave with a case study of sandy loam and clay by compression tests. In: Development Strategy of the Geological Exploration of the Subsoils: Present and Future, Moscow, Russia, 2, pp. 258–259. https://doi.org/10.5281/zenodo.3832304.
- Lemenkov, V., Lemenkova, P., 2021a. Using TeX Markup Language for 3D and 2D Geological Plotting. Foundations of Computing and Decision Sciences 46(3), pp. 43–69. https://doi.org/10.2478/fcds-2021-0004.10.2478/fcds-2021-0004
- Lemenkov, V., Lemenkova, P., 2021b. Measuring Equivalent Cohesion Ceq of the Frozen Soils by Compression Strength Using Kriolab Equipment. Civil and Environmental Engineering Reports, 31(2), pp. 63–84. https://doi.org/10.2478/ceer-2021-0020.10.2478/ceer-2021-0020
- Lemenkova P., 2019. Statistical Analysis of the Mariana Trench Geomorphology Using R Programming Language. Geodesy and Cartography, 45, pp. 57–84. https://doi.org/10.3846/gac.2019.3785.10.3846/gac.2019.3785
- Lemenkova, P., 2020. Using GMT for 2D and 3D Modeling of the Ryukyu Trench Topography, Pacific Ocean. Miscellanea Geographica, 25(3), pp. 1–13. https://doi.org/10.2478/mgrsd-2020-0038.10.2478/mgrsd-2020-0038
- Li, Q., Sun, S. F. 2008. Development of the universal and simplified soil model coupling heat and water transport. Science in China Series D Earth Sciences, 51(1), pp. 88-102. https://doi.org/10.1007/s11430-007-0153-2.10.1007/s11430-007-0153-2
- Lin, Z., Niu, F., Li, X., Li, A., Liu, M., Luo, J., Shao, Z., 2018. Characteristics and controlling factors of frost heave in high-speed railway subgrade, Northwest China. Cold Regions Science and Technology, 153, 33-44. https://doi.org/10.1016/j.coldregions.2018.05.001.10.1016/j.coldregions.2018.05.001
- Lindh, P., Hermansson, Å., 2001. Test method to evaluate frost performance and frost heave of stabilised soil. International symposium on subgrade stabilisation and in situ pavement recycling using cement, Salamanca, October 2001. pp 241-254.
- Lindh P., 2004. Compaction- and strength properties of stabilised and unstabilised fine- grained tills. Lund University, Lund, Sweden. Doctoral Thesis. https://doi.org/10.13140/RG.2.1.1313.6481.
- Logan, T., Bilodeau, J.-P., Henry, K., 2020. Frost Action and Climate Change. Chapter 5. In: Shoop, S. A. (Ed.). Frost Action in Soils: Fundamentals and Mitigation in a Changing Climate. Publisher: American Society of Civil Engineers. https://doi.org/10.1061/9780784415085.10.1061/9780784415085
- Long, X., Cen, G., Cai, L., Chen, Y. 2018. Model experiment of uneven frost heave of airport pavement structure on coarse-grained soils foundation. Construction and Building Materials, 188, 372 – 380. https://doi.org/10.1016/j.conbuildmat.2018.08.100.10.1016/j.conbuildmat.2018.08.100
- López-Fernández, C., Prieto, D.A., Fernández-Viejo, G., Pando, L., Castells Fernández, E., 2013. Surface Subsidence Induced by Groundwater Drainage Tunneling in Granite Residual Soils (Burata Railway Tunnel, Spain). Journal of Geotechnical and Geoenvironmental Engineering, 139(5), 821-824. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000805.10.1061/(ASCE)GT.1943-5606.0000805
- McCabe, E.Y. and Kettle, R.J., 1995. Soil Freezing Response: Influence of Test Conditions. Geotechnical Testing Journal, 8(2), pp. 49 – 58. https://doi.org/10.1520/GTJ10510J.10.1520/GTJ10510J
- Michalowski, R. L., Zhu, M., 2007. Modeling Heaving in Frost-Susceptible Soils. Computer Applications In Geotechnical Engineering, Geotechnical Special Publication. Geo-Denver 2007 February 18-21, 2007, Denver, Colorado, United States. pp. 1-10. https://doi.org/10.1061/40901(220)18.10.1061/40901(220)18
- Muller, S. W., French, H., Nelson, F., 2008. Frozen in Time: Permafrost and Engineering Problems. American Society of Civil Engineers. https://doi.org/10.1061/9780784409893.10.1061/9780784409893
- Nagare, R. M., 2011. Coupled Heat and Water Transport in Frozen Organic Soils. Ph. D. thesis, The University of Western Ontario, London, Canada, 191 pp. https://ir.lib.uwo.ca/etd/158.
- Nishikawa, J., Sakuraba, M., 2002. Frost Heave Experiment in Open Pit. In: 11th International Conference on Cold Regions Engineering, May 20-22, 2002, Anchorage, Alaska, United States, pp. 675-682. https://doi.org/10.1061/40621(254)58.10.1061/40621(254)58
- Penner. E., 1959. The mechanism of frost heaving in soils. Highway Research Board Bulletin, 221, p. l-22.
- Penner, E., 1960. The importance of freezing rate in frost action in soil. Proceedings-American society for testing and materials, 60, pp. 1151-1165.
- Penner, E, 1961. Alternative freezing and thawing not a requirement for frost heaving in soils. Canadian Journal of Soil Science, 16(1), pp. 160 – 163. https://doi.org/10.4141/cjss61-021.10.4141/cjss61-021
- Penner, E, Ueda, T., 1977. The dependence of frost heaving on load application—preliminary results. In: Proceedings of the International Symposium on Frost Action in Soils, 1, pp. 137–143, Luleå University of Technology, Lulea, Sweden.
- Puppala, A. J., Griffin, J. A., Hoyos, L. R., Chomtid, S., 2004. Studies on Sulfate-Resistant Cement Stabilization Methods to Address Sulfate-Induced Soil Heave. Journal of Geotechnical and Geoenvironmental Engineering, 130(4), 391-402. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:4(391).10.1061/(ASCE)1090-0241(2004)130:4(391)
- Ravaska, O., Vesala, E., 2000. A permafrost foundation analysis. In: Ground Freezing 2000 – Frost Action in Soils. 1st Ed. https://doi.org/10.1201/9781003078654-48.10.1201/9781003078654-48
- Rempel, A. W., Wettlaufer, J. S., Worster, M. G., 2004. Premelting dynamics in a continuum model of frost heave. Journal of Fluid Mechanics, 498, pp. 227–244. https://doi.org/10.1017/S0022112003006761.10.1017/S0022112003006761
- Rempel, A.W., 2012. Hydromechanical Processes in Freezing Soils. Vadose Zone Journal, 11, vzj2012.0045. https://doi.org/10.2136/vzj2012.0045.10.2136/vzj2012.0045
- Shen, Y., Liu, X., Zuo, R., Tang, T., Tian, Y., Wang, Y., 2020. Effect of frost heave on a silt column filled with rubber-asphalt-fiber. Cold Regions Science and Technology, 174, 102991. https://doi.org/10.1016/j.coldregions.2020.102991.10.1016/j.coldregions.2020.102991
- Schenke, H. W., Lemenkova, P., 2008. Zur Frage der Meeresboden-Kartographie: Die Nutzung von AutoTrace Digitizer für die Vektorisierung der Bathymetrischen Daten in der Petschora-See. Hydrographische Nachrichten, 81, pp. 16–21. https://doi.org/10.6084/m9.figshare.7435538.
- Selvadurai, A. P. S., Shinde, S. B., 1993. Frost Heave Induced Mechanics of Buried Pipelines. Journal of Geotechnical Engineering, 119(12), pp. 1929-1951. https://doi.org/10.1061/(ASCE)0733-9410(1993)119:12(1929).10.1061/(ASCE)0733-9410(1993)119:12(1929)
- Taber, S., 1929. Frost heaving. Journal of Geology, 37(5), pp. 428 – 461. https://doi.org/10.1086/623637.10.1086/623637
- Taber, S., 1930. The mechanics of frost heaving. Journal of Geology, 38(4), pp. 303–317. https://doi.org/10.1086/623720.10.1086/623720
- Wang, X., Wang, C., Wang, X., Huo, Z., 2020. Response of soil compaction to the seasonal freezing-thawing process and the key controlling factors. CATENA, 184, 104247. https://doi.org/10.1016/j.catena.2019.104247.10.1016/j.catena.2019.104247
- Wersäll, C., Massarsch, K. R., 2013. Soil heave due to pile driving in clay. Sound Geotechnical Research to Practice, Geotechnical Special Publication (GSP 230) Honoring Robert D. Holtz, Edited by Armin W. Stuedlein, Ph. D., P.E., and Barry R. Christopher, Ph.D., P.E., ASCE, pp. 481 – 499. https://doi.org/10.1061/9780784412770.032.10.1061/9780784412770.032
- Widianto, Heilenman, G., Owen, J., Fente, J., 2009. Foundation Design for Frost Heave. In: 14th Conference on Cold Regions Engineering. August 31-September 2, 2009. Duluth, Minnesota, United States, pp. 599 – 608. https://doi.org/10.1061/41072(359)58.10.1061/41072(359)58
- Wu, Y., Zhai, E., Zhang, X., Wang, G., Lu, Y., 2021. A study on frost heave and thaw settlement of soil subjected to cyclic freeze-thaw conditions based on hydro-thermal-mechanical coupling analysis. Cold Regions Science and Technology, 188, 103296. https://doi.org/10.1016/j.coldregions.2021.103296.10.1016/j.coldregions.2021.103296
- Xie, H., Shanmugam, A. K., Issa, R. R. A., 2018. Big Data Analysis for Monitoring of Kick Formation in Complex Underwater Drilling Projects. Journal of Computing in Civil Engineering, 32(5), pp. 04018030. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000773.10.1061/(ASCE)CP.1943-5487.0000773
- Zhang, Y., Michalowski, R. L., 2014. Thermal-Hydro-Mechanical Modeling of Frost Action in Frost-Susceptible Soils. Geotechnical Special Publication, Geo-Shanghai 2014 May 26-28, 2014, Shanghai, China, pp. 735-744. https://doi.org/10.1061/9780784413388.077.10.1061/9780784413388.077
- Zhang, Y., White, D. J., Vennapusa, P. K. R., Johnson, A. E., Prokudin, M. M. 2018. Investigating Frost Heave Deterioration at Pavement Joint Locations. Journal of Performance of Constructed Facilities, 32(2), 04018001. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001143.10.1061/(ASCE)CF.1943-5509.0001143
- Zheng, H., Kanie, S., 2015. Combined Thermal-Hydraulic-Mechanical Frost Heave Model Based on Takashi’s Equation. Journal of Cold Regions Engineering, 29(4), 04014019. https://doi.org/10.1061/(ASCE)CR.1943-5495.0000089.10.1061/(ASCE)CR.1943-5495.0000089
- Zhou, F., Zai, J., Mei, G., Zhou, G., 2006. Analysis of Soil Heave Due to Pile-Sinking in Soft Clay. GeoShanghai International Conference, June 6-8, 2006, Shanghai, China, pp. 271-276. https://doi.org/10.1061/40865(197)35.10.1061/40865(197)35
- Zhu, Y., Li, Y., Hao, Z., Luo, L., Luo, J., Wang, L., 2021. An analytical solution for the frost heaving force and displacement of a noncircular tunnel. Computers and Geotechnics, 133, 104022. https://doi.org/10.1016/j.compgeo.2021.104022.10.1016/j.compgeo.2021.104022