Al-Tayyib, A.J., Al-Zahrani, M.M., R., and A., Al-Sulaimani, G.J. (1988). Effect of polypropylene fiber reinforcement on the properties of fresh and hardened concrete in the Arabian Gulf environment: Cement and Concrete Research, Vol. 18, No. 4, pp. 561–570.10.1016/0008-8846(88)90049-X
Alhozaimy, A.M., Soroushian, P., and Mirza, F. (1996). Mechanical properties of polypropylene fiber reinforced concrete and the effects of pozzolanic materials: Cement and Concrete Composites, Vol. 18, No. 2, pp. 85–92, DOI: 10.1016/0958-9465(95)00003-8.10.1016/0958-9465(95)00003-8
Alzeer, M., and MacKenzie, K.J.D. (2012). Synthesis and mechanical properties of new fibre-reinforced composites of inorganic polymers with natural wool fibres: Journal of Materials Science, Vol. 47, No. 19, pp. 6958–6965, DOI: 10.1007/s10853-012-6644-3.10.1007/s10853-012-6644-3
Assaedi, H., Shaikh, F.U.A., and Low, I.M. (2016). Influence of mixing methods of nano silica on the microstructural and mechanical properties of flax fabric reinforced geopolymer composites: Construction and Building Materials, DOI: 10.1016/j.conbuildmat.2016.07.049.10.1016/j.conbuildmat.2016.07.049
ASTM C 1585 (2013). Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-: ASTM International, pp. 4–9, DOI: 10.1520/C1585-13.2.10.1520/C1585-13.2
ASTM C 469 (2014). ASTM C469/C469M-14: Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression: Annual Book of ASTM Standards, DOI: 10.1520/C0469.10.1520/0469
ASTM C293-02 (2002). Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Center-Point Loading): Annual Book of ASTM Standards, pp. 1–3, DOI: 10.1520/D1635.10.1520/D1635
Aulia, T.B. (2002). “Effects of polypropylene fibers on the properties of high-strength concretes.” Institutes for Massivbau and Baustoffechnologi, University Leipzig, Lacer,, p. 7.
Bagherzadeh, R., Pakravan, H.R., Sadeghi, A., Latifi, M., and Merati, A.A. (2012). An Investigation on Adding Polypropylene Fibers to Reinforce Lightweight Cement Composites (LWC): Journal of Engineered Fibers and Fabrics, Vol. 7, No. 4, pp. 13–21.10.1177/155892501200700410
Bernal, S., De Gutierrez, R., Delvasto, S., and Rodriguez, E. (2010). Performance of an alkali-activated slag concrete reinforced with steel fibers: Construction and Building Materials, Vol. 24, No. 2, pp. 208–214, DOI: 10.1016/j.conbuildmat.2007.10.027.10.1016/j.conbuildmat.2007.10.027
Gao, X., Yu, Q.L., Yu, R., and Brouwers, H.J.H. (2017). Evaluation of hybrid steel fiber reinforcement in high performance geopolymer composites: Materials and Structures/Materiaux et Constructions, DOI: 10.1617/s11527-017-1030-x.10.1617/s11527-017-1030-x
Hardjito, D., Cheak, C.C., Ho, C., and Ing, L. (2008). Strength and Setting Times of Low Calcium Fly Ash-based Geopolymer Mortar: No. 1990, pp. 3–11.10.5539/mas.v2n4p3
Hardjito, D., and Rangan, B. V (2005). Development and Properties of Low Calcium Fly Ash based Geopolymer Concrete: Research Report GC 1 Faculty of Engineering Curtin University of Technology Perth, Australia.
He, P., Jia, D., Lin, T., Wang, M., and Zhou, Y. (2010). Effects of high-temperature heat treatment on the mechanical properties of unidirectional carbon fiber reinforced geopolymer composites: Ceramics International, Vol. 36, No. 4, pp. 1447–1453, DOI: 10.1016/j.ceramint.2010.02.012.10.1016/j.ceramint.2010.02.012
Heard, W.F., Basu, P.K., Slawson, T., and Nordendale, N.A. (2011). “Characterization and performance optimization of a cementitious composite for quasi-static and dynamic loads.” Procedia Engineering.10.1016/j.proeng.2011.04.500
Hua Yuan, Liu Ronghua, Z.Y. (1998). Experimental Study on High Performance Concrete Reinforced with Fiber: China Concrete and Cement Products, Vol. 3, pp. 40–43.
Hughes B.P., and Fattuhi., N.I. (1976). The Steel Fibre-Reinforced Concrete: Magazine of Concrete Research, Vol. 28, No. 96, pp. 157–161.10.1680/macr.1976.28.96.157
Kalifa, P., Chéné, G., and Gallé, C. (2001). High-temperature behaviour of HPC with polypropylene fibres - From spalling to microstructure: Cement and Concrete Research, Vol. 31, pp. 1487–1499, DOI: 10.1016/S0008-8846(01)00596-8.10.1016/S0008-8846(01)00596-8
Komonen, J., and Penttala, V. (2003). Effects of high temperature on the pore structure and strength of plain and polypropylene fiber reinforced cement pastes: Fire Technology, DOI: 10.1023/A:1021723126005.10.1023/A:1021723126005
Kuenzel, C., Vandeperre, L.J., Donatello, S., Boccaccini, A.R., and Cheeseman, C. (2012). Ambient temperature drying shrinkage and cracking in metakaolin-based geopolymers: Journal of the American Ceramic Society, Vol. 95, No. 10, pp. 3270–3277, DOI: 10.1111/j.1551-2916.2012.05380.x.10.1111/j.1551-2916.2012.05380.x
Li Guangwei, Y.Y. (2001). Experimental Study on Properties of Polypropylene Fiber Reinforced Concret: Advances in China Water Conservancy and Hydropower , ,( ): 14-16, Vol. 21, No. 5, pp. 14–16.
Li, Z., Zhang, Y., Zhou, X., Behzad Nematollahi, Noushini, A., Hastings, M., Castel, A., Aslani, F., Olivia, M., Nikraz, H., López-Buendía, A.M., Romero-Sánchez, M.D., Climent, V., Guillem, C., Perera, D.S., et al. (2016). A Study of Utilization Aspect of Polypropylene Fibre for Making Value Added Concrete: Construction and Building Materials, Vol. 2, No. 2, pp. 103–106, DOI: 10.15373/22778179/feb2013/37.10.15373/22778179/FEB2013/37
Malhotra, V.M., Carette, G.G., and Bilodeau, A. (1994). Mechanical Properties and Durability of Polypropylene Fibre Reinforced High volume Fly Ash Concrete for Shotcrete Application: ACI Materials Journal, Vol. 91, No. 5, pp. 478–486.10.14359/4070
Natali, A., Manzi, S., and Bignozzi, M.C. (2011). “Novel fiber-reinforced composite materials based on sustainable geopolymer matrix.” Procedia Engineering,, p. 1124–1131.10.1016/j.proeng.2011.11.2120
Nematollahi, B., Sanjayan, J., Qiu, J., and Yang, E.H. (2017). High ductile behavior of a polyethylene fiber-reinforced one-part geopolymer composite: A micromechanics-based investigation: Archives of Civil and Mechanical Engineering, DOI: 10.1016/j.acme.2016.12.005.10.1016/j.acme.2016.12.005
Nematollahi, B., Sanjayan, J., and Shaikh, F.U.A. (2015). Synthesis of heat and ambient cured one-part geopolymer mixes with different grades of sodium silicate: Ceramics International, Vol. 41, No. 4, pp. 5696–5704, DOI: 10.1016/j.ceramint.2014.12.154.10.1016/j.ceramint.2014.12.154
Olivia, M., and Nikraz, H. (2012). Properties of fly ash geopolymer concrete designed by Taguchi method: Materials and Design, Vol. 36, No. January 2011, pp. 191–198, DOI: 10.1016/j.matdes.2011.10.036.10.1016/j.matdes.2011.10.036
Perera, D.S., Uchida, O., Vance, E.R., and Finnie, K.S. (2007). Influence of curing schedule on the integrity of geopolymers: Journal of Materials Science, Vol. 42, No. 9, pp. 3099–3106, DOI: 10.1007/s10853-006-0533-6.10.1007/s10853-006-0533-6
Puertas, F., Amat, T., Fernández-Jiménez, A., and Vázquez, T. (2003). Mechanical and durable behaviour of alkaline cement mortars reinforced with polypropylene fibres: Cement and Concrete Research, Vol. 33, No. 12, pp. 2031–2036, DOI: 10.1016/S0008-8846(03)00222-9.10.1016/S0008-8846(03)00222-9
Rai, B., Roy, L.B., and Rajjak, M. (2018). A statistical investigation of different parameters influencing compressive strength of fly ash induced geopolymer concrete: Structural Concrete, DOI: 10.1002/suco.201700193.10.1002/suco.201700193
Ranjbar, N., Mehrali, M., Behnia, A., Javadi Pordsari, A., Mehrali, M., Alengaram, U.J., and Jumaat, M.Z. (2016a). A Comprehensive Study of the Polypropylene Fiber Reinforced Fly Ash Based Geopolymer: PloS one, Vol. 11, No. 1, p. e0147546, DOI: 10.1371/journal.pone.0147546.10.1371/journal.pone.0147546472656726807825
Ranjbar, N., Mehrali, M., Mehrali, M., Alengaram, U.J., and Jumaat, M.Z. (2015). Graphene nanoplatelet-fly ash based geopolymer composites: Cement and Concrete Research, Vol. 76, pp. 222–231, DOI: 10.1016/j.cemconres.2015.06.003.10.1016/j.cemconres.2015.06.003
Ranjbar, N., Mehrali, M., Mehrali, M., Alengaram, U.J., and Jumaat, M.Z. (2016b). High tensile strength fly ash based geopolymer composite using copper coated micro steel fiber: Construction and Building Materials, DOI: 10.1016/j.conbuildmat.2016.02.228.10.1016/j.conbuildmat.2016.02.228
Ranjbar, N., Talebian, S., Mehrali, M., Kuenzel, C., Cornelis Metselaar, H.S., and Jumaat, M.Z. (2016c). Mechanisms of interfacial bond in steel and polypropylene fiber reinforced geopolymer composites: Composites Science and Technology, Vol. 122, pp. 73–81, DOI: 10.1016/j.compscitech.2015.11.009.10.1016/j.compscitech.2015.11.009
Reed, M., Lokuge, W., and Karunasena, W. (2014). Fibre-reinforced geopolymer concrete with ambient curing for in situ applications: Journal of Materials Science, Vol. 49, No. 12, pp. 4297–4304, DOI: 10.1007/s10853-014-8125-3.10.1007/s10853-014-8125-3
Ridtirud, C., Chindaprasirt, P., and Pimraksa, K. (2011). Factors affecting the shrinkage of fly ash geopolymers: International Journal of Minerals, Metallurgy and Materials, Vol. 18, No. 1, pp. 100–104, DOI: 10.1007/s12613-011-0407-z.10.1007/s12613-011-0407-z
Sofi, M., van Deventer, J.S.J., Mendis, P.A., and Lukey, G.C. (2007). Engineering properties of inorganic polymer concretes (IPCs): Cement and Concrete Research, Vol. 37, No. 2, pp. 251–257, DOI: 10.1016/j.cemconres.2006.10.008.10.1016/j.cemconres.2006.10.008
Urbanova, M., Andertova, J., Brus, J., Vorel, J., Koloušek, D., and Hulinsky, V. (2007). Preparation, structure and hydrothermal stability of alternative (sodium silicate-free) geopolymers: Journal of Materials Science, Vol. 42, No. 22, pp. 9267–9275, DOI: 10.1007/s10853-007-1910-5.10.1007/s10853-007-1910-5
Yost, J.R., Radlińska, A., Ernst, S., and Salera, M. (2013). Structural behavior of alkali activated fly ash concrete. Part. Mixture design, material properties and sample fabrication: Materials and Structures/Materiaux et Constructions, DOI: 10.1617/s11527-012-9919-x.10.1617/s11527-012-9919-x
Yunsheng, Z., Wei, S., Zongjin, L., Xiangming, Z., Eddie, and Chungkong, C. (2008). Impact properties of geopolymer based extrudates incorporated with fly ash and PVA short fiber: Construction and Building Materials, Vol. 22, No. 3, pp. 370–383, DOI: 10.1016/j.conbuildmat.2006.08.006.10.1016/j.conbuildmat.2006.08.006
Zhang, Z., Yao, X., Zhu, H., Hua, S., and Chen, Y. (2009). Preparation and mechanical properties of polypropylene fiber reinforced calcined kaolin-fly ash based geopolymer: Journal of Central South University of Technology, Vol. 16, pp. 49–52, DOI: 10.1007/s11771-009-0008-4.10.1007/s11771-009-0008-4
Zollo, R.F. Collated fibrillated polypropylene fibers in FRC, in G.C. Hoff (ed.) Fiber Reinforced Concrete: American Concrete Institute, Farmington Hills, MI, Vol. SP-81, pp. 397–409.
Zuhua, Z., Xiao, Y., Huajun, Z., and Yue, C. (2009). Role of water in the synthesis of calcined kaolin-based geopolymer: Applied Clay Science, Vol. 43, No. 2, pp. 218–223, DOI: 10.1016/j.clay.2008.09.003.10.1016/j.clay.2008.09.003