References
- Aposhian HV, Maiorino RM, Gonzalez-Ramirez D, Zuniga-Charles M, Xu Z, Hurlbut KM, Junco-Munoz P, Dart RC, Aposhian MM. (1995). Mobilization of heavy metals by newer, therapeutically useful chelating agents. Toxicol97: 23–38.10.1016/0300-483X(95)02965-B
- Assi MA, Hezmee MNM, Haron AW, Sabri MY, Rajion MA. (2016). The detrimental effects of lead on human and animal health. Vet World9: 660–671.10.14202/vetworld.2016.660-671
- Astolfi ML, Protano C, Schiavi E, Marconi E, Capobianco D, Massimi L, Ristorini M, Baldassarre ME, Laforgia N, Vitali M, Canepari S, Mastromarino P. (2019). A prophylactic multi-strain probiotic treatment to reduce the absorption of toxic elements: In-vitro study and biomonitoring of breast milk and infant stools. Environ Int130: 104818.10.1016/j.envint.2019.05.012
- Bhattacharya S. (2017). Medicinal plants and natural products in amelioration of arsenic toxicity: a short review. Pharm Biol55: 349–354.10.1080/13880209.2016.1235207
- Bhattacharya S. (2018a). The role of medicinal plants and natural products in melioration of cadmium toxicity. Orient Pharm Exp Med18: 177–186.10.1007/s13596-018-0323-0
- Bhattacharya S. (2018b). Medicinal plants and natural products can play a significant role in mitigation of mercury toxicity. Interdiscip Toxicol11: 247–254.10.2478/intox-2018-0024685301731762676
- Bisanz JE, Enos MK, Mwanga JR, Changalucha J, Burton JP, Gloor GB, Reid G. (2014). Randomized open-label pilot study of the influence of probiotics and the gut microbiome on toxic metal levels in Tanzanian pregnant women and school children. mBio5: e01580–14.10.1128/mBio.01580-14
- Daisley BA, Monachese M, Trinder M, Bisanz JE, Chmiel JA, Burton JP, Reid G. (2019) Immobilization of cadmium and lead by Lactobacillus rhamnosus GR-1 mitigates apical-to-basolateral heavy metal translocation in a Caco-2 model of the intestinal epithelium. Gut Microbes10: 321–333.10.1080/19490976.2018.1526581654631430426826
- Ejtahed HS, Mohtadi-Nia J, Homayouni-Rad A, Niafar M, Asghari-Jafarabadi M, Mofid V. (2012). Probiotic yogurt improves antioxidant status in type 2 diabetic patients. Nutrition28: 539–543.10.1016/j.nut.2011.08.013
- Feng P, Kakade A, Virk AK, Li X, Liu P. (2019). A review on gut remediation of selected environmental contaminants: possible roles of probiotics and gut microbiota. Nutrients11: 22.10.3390/nu11010022
- Flora G, Gupta G, Tiwari A. (2012). Toxicity of lead: A review with recent updates. Interdiscip Toxicol5: 47–58.10.2478/v10102-012-0009-2
- Foligné B, Daniel C, Pot B. (2013). Probiotics from research to market: The possibilities, risks and challenges. Curr Opin Microbiol16: 284–292.10.1016/j.mib.2013.06.008
- Ghenioa AM, Elokle OS, Nazem AM, Ashry KM. (2015). Protective effect of probiotic bactosac® against induced sub chronic lead toxicity in broiler chicks. Alexandria J Vet Sci47: 53–64.10.5455/ajvs.200070
- Giri SS, Yun S, Jun JW, Kim HJ, Kim SG, Kang JW, Kim SW, Han SJ, Sukumaran V, Park SC. (2018). Therapeutic effect of intestinal autochthonous Lactobacillus reuteri P16 against waterborne lead toxicity in Cyprinus carpio. Front Immunol9: 1824.10.3389/fimmu.2018.01824
- Jankovic I, Sybesma W, Phothirath P, Ananta E, Mercenier A. (2010). Application of probiotics in food products-challenges and new approaches. Curr Opin Biotechnol21: 175–181.10.1016/j.copbio.2010.03.009
- Kim HC, Jang TW, Chae HJ, Choi WJ, Ha MN, Ye BJ, Kim BG, Jeon MJ, Kim SY, Hong YS. (2015). Evaluation and management of lead exposure. Ann Occup Environ Med27: 30.10.1186/s40557-015-0085-9
- Kullisaar T, Songisepp E, Mikelsaar M, Zilmer K, Vihalemm T, Zilmer M. (2003). Antioxidative probiotic fermented goats’ milk decreases oxidative stress-mediated atherogenicity in human subjects. British J Nutr90: 449–456.10.1079/BJN2003896
- Lamidi IY, Akefe IO. (2017). Mitigate effects of antioxidants in lead toxicity. Clin Pharmacol Toxicol J1: 3.
- Li B, Jin D, Yu S, Evivie SE, Muhammad Z, Huo G, Liu F. (2017). In vitro and in vivo evaluation of Lactobacillus delbrueckii subsp. bulgaricus KLDS1.0207 for the alleviative effect on lead toxicity. Nutrients9: 845.10.3390/nu9080845
- Liebelt EL, Shannon MW. (1994). Oral chelators for childhood lead poisoning. Pediatr Ann23: 616–626.10.3928/0090-4481-19941101-10
- Lopes AC, Peixe TS, Mesas AE, Paoliello MM. (2016). Lead exposure and oxidative stress: a systematic review. Rev Environ Contam Toxicol236: 193–238.10.1007/978-3-319-20013-2_3
- Monachese M, Burton JP, Reid G. (2012). Bioremediation and tolerance of humans to heavy metals through microbial processes: A potential role for probiotics? Appl Environ Microbiol78: 6397–6404.10.1128/AEM.01665-12342667622798364
- Patra RC, Rautray AK, Swarup D. (2011). Oxidative stress in lead and cadmium toxicity and its amelioration. Vet Med Int2011: 457327.10.4061/2011/457327
- Porru, S, Alessio L. (1996). The use of chelating agents in occupational lead poisoning. Occup Med46: 41–48.10.1093/occmed/46.1.41
- Rijkers GT, Bengmark S, Enck P, Haller D, Herz U, Kalliomaki M, Kudo S, Lenoir-Wijnkoop I, Mercenier A, Myllyluoma E. (2010). Guidance for substantiating the evidence for beneficial effects of probiotics: Current status and recommendations for future research. J Nutr140: 671S–676S.10.3945/jn.109.113779
- Tian F, Zhai Q, Zhao J, Liu X, Wang G, Zhang H, Zhang H, Chen W. (2012). Lactobacillus plantarum CCFM8661 alleviates lead toxicity in mice. Biol Trace Elem Res150: 264–271.10.1007/s12011-012-9462-1
- Wang Y, Wu Y, Wang Y, Xu H, Mei X, Yu D, Wang Y, Li W. (2017). Antioxidant properties of probiotic bacteria. Nutrients9: 521.10.3390/nu9050521
- Zhai Q, Yang L, Zhao J, Zhang H, Tian F, Chen W. (2018). Protective effects of dietary supplements containing probiotics, micronutrients, and plant extracts against lead toxicity in mice. Front Microbiol9: 2134.10.3389/fmicb.2018.02134