Have a personal or library account? Click to login
Blood biomarkers of common toad Rhinella arenarum following chlorpyrifos dermal exposure Cover

Blood biomarkers of common toad Rhinella arenarum following chlorpyrifos dermal exposure

Open Access
|Mar 2019

References

  1. Aebi H. (1984). Catalase in vitro. Met Enzymol105: 121–126.10.1016/S0076-6879(84)05016-3
  2. Ali D, NagpureNS, Kumar S, Kushwaha B, Lakra WS. (2009) Assessment of genotoxic and mutagenic effects of chlorpyrifos in freshwater fish Channa punctatus (Bloch) using micronucleus assay and alkaline single-cell gel electrophoresis. Food Chem Toxicol47: 650–656. https://doi.org/10.1016/j.fct.2008.12.02110.1016/j.fct.2008.12.02119141310
  3. ASIH, HL, SSAR (2004). Guidelines for use of live amphibians and reptiles in field research. Available at: http://www.utexas.edu/depts/asih/herpcoll.htlm. Accessed 13 June 2014.
  4. Attademo AM, Peltzer PM, Lajmanovich RC. (2005). Amphibians occurring in soybean and implications for biological control in Argentina. Agric Ecosyst Environ106 (1): 389–394. https://doi.org/10.1016/j.agee.2004.08.01210.1016/j.agee.2004.08.012
  5. Attademo AM, Peltzer PM, Lajmanovich RC, Cabagna M, Fiorenza G. (2007). Plasma B-esterases and glutathione S-transferase activities in the toad Chaunus schneideri (Amphibia, Anura) inhabiting rice agroecosystems of Argentina. Ecotoxicology16: 533–539. https://doi.org/10.1007/s10646-007-0154-010.1007/s10646-007-0154-017701347
  6. Attademo AM, Cabagna-Zenklusen MC, Lajmanovich RC, Peltzer PM, Junges C, Bassó A. (2011). B-esterase activities and blood cell morphology in the frog Leptodactyluschaquensis (Amphibia: Leptodactylidae) on rice agroecosystems from Santa Fe Province (Argentina). Ecotoxicology20: 274–282. https://doi.org/10.1007/s10646-010-0579-810.1007/s10646-010-0579-821113795
  7. Attademo AM, Peltzer PM, Lajmanovich RC, Cabagna-Zenklusen MC, Junges CM, Basso A. (2014). Biological endpoints, enzyme activities, and blood cell parameters in two anuran tadpole species in rice agroecosystems of mid-eastern Argentina. Environ Monit Assess186: 635–649. https://doiorg/10.1007/s10661-013-3404-z10.1007/s10661-013-3404-z24078141
  8. Attademo AM, Peltzer PM, Lajmanovich RC, Cabagna-Zenklusen M, Junges C, Lorenzatti E, Aró C, Grenón P. (2015). Biochemical changes in certain enzymes of Lysapsus limellium (Anura: Hylidae) exposed to chlorpyrifos. Ecotoxicol Environ Saf113: 287–29410.1016/j.ecoenv.2014.12.02125528379
  9. Ayres M Jr, Ayres D, Santos A. (2008). BioEstat. Versão5.0. Belém, Pará, Brazil: Sociedade Civil Mamirauá, MCT-CNPq.
  10. Barski D, Spodniewska A, Zasadowski A. (2011). Activity of superoxide dysmutase, catalase and glutathione peroxidase in rats exposed to chlorpyrifos and erofloxacin. Pol J Vet Sci14: 523–529.10.2478/v10181-011-0078-8
  11. Bionda C de L, Kost S, Salas NE, Lajmanovich R, Sinsch U, Martino A. (2015). Age structure, growth and longevity in the common toad, Rhinella arena-rum, from Argentina. Acta Herpetol10: 55–62.
  12. Brühl CA, Schmidt T, Pieper S, Alscher A (2013) Terrestrial pesticide exposure of amphibians: an underestimated cause of global decline? Sci Rep3: 1135. https://doi.org/10.1038/srep0113510.1038/srep01135355360223350038
  13. Bunyan PJ, Jennings DM, Taylor A. (1968). Organophosphorus poisoning. Properties of avian esterases. J Agric Food Chem16: 326–331. https://doi.org/10.1021/jf60156a02810.1021/jf60156a028
  14. Cabagna-Zenklusen MC, Lajmanovich RC, Stringhini GA, Sanchez-Hernandez J, Peltzer P. (2005). Hematological parameters of health status in common toad Bufo arenarum in agroecosystems of Santa Fe Province, Argentina. Appl Herpetol2: 373–380.10.1163/157075405774483085
  15. Cacciatore LC, Nemirovsky SI, Verrengia Guerrero NR, Cochón AC. (2015). Azinphos-methyl and chlorpyrifos, alone or in a binary mixture, produce oxidative stress and lipid peroxidation in the freshwater gastropod Planorbarius corneus. Aquat Toxicol167: 12–129. https://doi.org/10.1016/j.aquatox.2015.07.009.aaaaaa10.1016/j.aquatox.2015.07.009.aaaaaa
  16. Dacie JV, Lewis SM. (1984). Practical hematology. Churchill Livingstone, New York.
  17. Davidson C, Shaffer HB, Jennings MR. (2001). Declines of the california red-legged frog: climate, uv-b, habitat, and pesticides hypotheses. Ecol Appl11: 464–479.10.1890/1051-0761(2001)011[0464:DOTCRL]2.0.CO;2
  18. Davis AK, Maney DL, Maerz JC. (2008). The use of leukocyte profiles to measure stress in vertebrates: A review for ecologists. Funct Ecol22: 760–772.10.1111/j.1365-2435.2008.01467.x
  19. Eaton DL, Daroff RB, Autrup H, Bridges J, Buffler P, Costa LG, Coyle J, McKhann G, Mobley WC, Nadel L, Neubert D, Schulte-Hermann R, Spencer PS. (2008). Review of the toxicology of chlorpyrifos with an emphasis on human exposure and neurodevelopment. Crit Rev Toxicol38 Suppl 2: 1–125. https://doi.org/10.1080/1040844080227215810.1080/1040844080227215818726789
  20. Ellman GL, Courtney KD, Andres V, Featherstone RM (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol.7: 88–95.10.1016/0006-2952(61)90145-9
  21. Fellers GM, McConnell LL, Pratt D, Datta S. (2004). Pesticides in mountain yellow-legged frogs (Rana muscosa) from the Sierra Nevada Mountains of California, USA. Environ Toxicol Chem23: 2170–2177.10.1897/03-491
  22. Gomori G. (1953). Human Esterases. J Lab Clin Med42: 445–453.
  23. Hayes TB, Falso P, Gallipeau S, Stice M. (2010). The cause of global amphibian declines: a developmental endocrinologist’s perspective. J Exp Biol213: 921–933. https://doi.org/10.1242/jeb.040865.10.1242/jeb.040865282931720190117
  24. Helbing CC (2012). The metamorphosis of amphibian toxicogenomics. Front Genet3: 37. https://doi.org/10.3389/fgene.2012.00037.10.3389/fgene.2012.00037330311322435070
  25. Iko WM, Archuleta AS, Knopf FL. (2003). Plasma cholinesterase levels of mountain plovers (Charadriusmontanus) wintering in central California, USA. Environ Toxicol Chem22: 119–1125.10.1897/1551-5028(2003)022<;0119:PCLOMP>2.0.CO;2
  26. IUCN (2015). An Analysis of Amphibians on the 2015 IUCN Red List of Threatened Species. Version 2015-4. Available at: www.iucnredlist.org/amphibians. Accessed 11 June 2015.
  27. Jun D, Kuca K, Picha J, Koleckar V, Marek J. (2008). Potency of novel oximes to reactivate sarin inhibited human cholinesterases. Drug Chem Toxicol31: 1–9. https://doi.org/10.1080/0148054070168823810.1080/0148054070168823818161504
  28. Laguerre C, Sanchez-Hernandez JC, Köhler HR, Triebskorn R, Capowiez Y, Rault M, Mazzia C. (2009). B-type esterases in the snail Xeropicta derbentina: an enzymological analysis to evaluate their use as biomarkers of pesticide exposure. Environ Pollut157: 199–207. https://doi.org/10.1016/j.envpol.2008.07.00310.1016/j.envpol.2008.07.00318775593
  29. Lajmanovich RC, Sánchez-Hernández JC, Peltzer PM, Fiorenza G, Cabagna MC, Bassó A. (2008). Levels of plasma B-esterases and glutathione-S-transferase activities in three South American toad species. Toxicol Environ Chem 90: 1145–1161.10.1080/02772240801923107
  30. Lajmanovich RC, Junges CM, Attademo AM, Peltzer P, Cabagna Zenklusen MC, Bassó A. (2013). Individual and mixture toxicity of commercial formulations containing glyphosate, metsulfuron-methyl, bispyribac-sodium, and picloram on Rhinella arenarum tadpoles. Water Air Soil Pollut224: 1404. https://doi.org/10.1007/s11270-012-1404-110.1007/s11270-012-1404-1
  31. Lajmanovich RC, Attademo AM, Simoniello MF, Poletta G, Junges CM, Peltzer P, Grenón P, Cabagna Zenklusen MC. (2015). Harmful effects of the dermal intake of commercial formulations containing chlorpyrifos, 2,4-D, and glyphosate on the common toad Rhinella arenarum (Anura: Bufonidae). Water Air Soil Pollut226: 427. https://doi.org/10.1007/s11270-015-2695-910.1007/s11270-015-2695-9
  32. Lee WJ, Blair A, Hoppin JA, Sandler DP, Dosemeci M, Alavanja MC. (2004). Cancer incidence among pesticide applicators exposed to chlorpyrifos in the Agricultural Health Study. J Natl Cancer Inst96: 1781–9. https://doi.org/10.1093/jnci/djh32410.1093/jnci/djh32415572760
  33. Liendro N, Ferrari A, Mardirosian M, Lascano CI, Venturino A. (2015). Toxicity of the insecticide chlorpyrifos to the South American toad Rhinella arena-rum at larval developmental stage. Environ Toxicol Pharmacol39: 525–35. https://doi.org/10.1016/j.etap.2014.12.02210.1016/j.etap.2014.12.02225681703
  34. Mann RM, Hyne R V, Choung CB, Wilson SP. (2009). Amphibians and agricultural chemicals: Review of the risks in a complex environment. Environ Pollut157: 2903–2927. https://doi.org/10.1016/j.envpol.2009.05.01510.1016/j.envpol.2009.05.01519500891
  35. Marino D, Ronco A. (2005). Cypermethrin and chlorpyrifos concentration levels in surface water bodies of the Pampa Ondulada, Argentina. Bull Environ Contam Toxicol75: 820–6. https://doi.org/10.1007/s00128-005-0824-710.1007/s00128-005-0824-716400566
  36. McInnes PF, Andersen DE, Hoff DJ, Hooper MJ, Kinkel LL. (1996). Monitoring exposure of nestling songbirds to agricultural application of an organophosphorus insecticide using cholinesterase activity. Environ Toxicol Chem15: 544–552. https://doi.org/10.1002/etc.562015042010.1002/etc.5620150420
  37. Müller C, Jenni-Eiermann S, Jenni L (2011). Heterophils/Lymphocytes-ratio and circulating corticosterone do not indicate the same stress imposed on Eurasian kestrel nestlings. Funct Ecol25: 566–576. https://doi.org/10.1111/j.1365-2435.2010.01816.x10.1111/j.1365-2435.2010.01816.x
  38. Muller M, Hess L, Tardivo A, Lajmanovich R, Attademo A, Poletta G, Simoniello MF, Yodice A, Lavarello S, Chialvo D, Scremin O. (2014). Neurologic dysfunction and genotoxicity induced by low levels of chlorpyrifos. Neurotoxicology45: 22–30. https://doi.org/10.1016/j.neuro.2014.08.01210.1016/j.neuro.2014.08.01225196089
  39. NRA (2000). The NRA Review of Chlorpyrifos. Volume 1. National Registration Authority for Agricultural and Veterinary Medicines, Canberra. http://www.apvma.gov.au/products/review/docs/chlorpyrifos_summary.pdf. Accessed 13 June 2017.
  40. Parsons KC, Matz AC, Hooper MJ, Pokras MA. (2000). Monitoring wading bird exposure to agricultural chemicals using serum cholinesterase activity. Environ Toxicol Chem19: 1317–1323. https://doi.org/10.1002/etc.562019051410.1002/etc.5620190514
  41. Peltzer PM, Lajmanovich RC, Attademo AM, Beltzer AH. (2006). Diversity of anurans across agricultural ponds in Argentina. Biodivers Conserv15: 3499–3513.10.1007/s10531-004-2940-9
  42. Pough FH. (1980). Advantages of ectothermy for tetrapods. Amer Nat115: 92–112.10.1086/283547
  43. Robles-Mendoza C, Zúñiga-Lagunes SR, Ponce de León-Hill CA, Hernández-Soto J, Vanegas-Pérez C. (2011). Esterases activity in the axolotl Ambystoma mexicanum exposed to chlorpyrifos and its implication to motor activity. Aquat Toxicol105: 728–734.10.1016/j.aquatox.2011.09.001
  44. Rodríguez-Castellanos L, Sanchez-Hernandez JC. (2007). Chemical reactivation and aging kinetics of organophosphorus-inhibited cholinesterases from two earthworm species. Environ Toxicol Chem26: 1992–2000. https://doi.org/10.1897/06-625R1.110.1897/06-625R1.117705652
  45. Sanchez-Hernandez JC, Moreno-Sanchez B (2002) Lizard cholinesterases as biomarkers of pesticide exposure: enzymological characterization. Environ Toxicol Chem21: 2319–2325.10.1002/etc.5620211109
  46. Sánchez-Hernandez JC (2003). Evaluating reptile exposure to cholinesteraseinhibiting agrochemicals by serum butyrylcholinesterase activity. Environ Toxicol Chem22: 296–301.10.1002/etc.5620220209
  47. Sánchez-Hernández JC, Carbonell R, Henríquez Pérez A, Montealegre M, Gómez L. (2004). Inhibition of plasma butyrylcholinesterase activity in the lizard Gallotia galloti palmae by pesticides: a field study. Environ Pollut132: 479–88. https://doi.org/10.1016/j.envpol.2004.05.00810.1016/j.envpol.2004.05.00815325464
  48. Sánchez-Hernandez JC (2007). Ecotoxicological perspectives of B-esterases in the assessment of pesticide contamination. In: Plattenberg RH (ed) Environmental Pollution: New Research. Nova Science Publishers, pp 1–45
  49. SENASA. Importacón Agroquimicos. (2011). http://www.senasa.gov.ar/conteni-do.php?to=n&in=524&ino=524&io=7331.
  50. Sparling DW, Fellers GM, McConnell LL. (2001). Pesticides and amphibian population declines in California, USA. Environ Toxicol Chem 20: 1591–1595.10.1002/etc.5620200725
  51. Sparling DW, Linder G, Bishop CA, Krest S. (2010). Ecotoxicology of Amphibians and Reptiles, Second Edi. CRC Press10.1201/EBK1420064162
  52. Turner L. (2003). Chlorpyrifos: Analysis of Risks to Endangered and Threatened Salmonand Steelhead. U.S. Environmental Protection Agency (EPA) Office of Pesticides (OPP)
  53. Valavanidis A, Vlahogianni T, Dassenakis M, Scoullos M. (2006). Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicol Environ Saf64: 178–89. https://doi.org/10.1016/j.ecoenv.2005.03.01310.1016/j.ecoenv.2005.03.01316406578
  54. Van Meter RJ, Glinski DA, Hong T, Cyterski M, Henderson WM, Purucker ST. (2014). Estimating terrestrial amphibian pesticide body burden through dermal exposure. Environ Pollut193: 262–268.10.1016/j.envpol.2014.07.003
  55. Van Meter RJ, Glinski DA, Henderson WM, Garrison AW, Cyterski M, Purucker ST. (2015). Pesticide uptake across the amphibian dermis through soil and overspray exposures. Arch Environ Contam Toxicol69: 545–56. https://doi.org/10.1007/s00244-015-0183-210.1007/s00244-015-0183-226135301
  56. Verma RS, Srivastava N. (2003). Effect of chlorpyrifos on thiobarbituric acid reactive substances, scavenging enzymes and glutathione in rat tissues. Indian J Biochem Biophys40: 423–428.
  57. Verma RS, Mehta A, Srivastava N. (2007). In vivo chlorpyrifos induced oxidative stress: Attenuation by antioxidant vitamins. Pestic Biochem Physiol88: 191–196. https://doi.org/10.1016/j.pestbp.2006.11.00210.1016/j.pestbp.2006.11.002
  58. Walker C. (1998). The use of biomarkers to measure the interactive effects of chemicals. Ecotoxicol Environ Saf40: 65–70.10.1006/eesa.1998.1643
  59. Wheelock CE, Miller JL, Miller MJ, Gee SJ, Shan G, Hammock BD. (2004). Development of toxicity identification evaluation procedures for pyrethroid detection using esterase activity. Environ Toxicol Chem23: 2699–2708.10.1897/03-544
  60. Wheelock CE, Phillips BM, Anderson BS, Miller JL, Miller MJ, Hammock BD. (2008). Applications of carboxylesterase activity in environmental monitoring and toxicity identification evaluations (TIEs). Rev Environ Contam Toxicol195: 117–178.10.1007/978-0-387-77030-7_5
  61. Widder PD, Bidwell JR. (2006). Cholinesterase activity and behavior in chlorpyrifos-exposed Rana sphenocephala tadpoles. Environ Toxicol Chem25: 2446–2454.10.1897/05-522R.1
  62. Wilson IB, Ginsburg S. (1955). A powerful reactivator of alkylphosphate-inhibited acetylcholinesterase. Biochim Biophys Acta18: 168–170. https://doi.org/10.1016/0006-3002(55)90040-810.1016/0006-3002(55)90040-8
  63. Wu J, Laird DA. (2003). Abiotic transformation of chlorpyrifos to chlorpyrifos oxon in chlorinated water. Environ Toxicol Chem22: 261–264.10.1002/etc.5620220204
  64. Xing H, Li S, Wang Z, Gao X, Xu S, Wang X. (2012). Histopathological changes and antioxidant response in brain and kidney of common carp exposed to atrazine and chlorpyrifos. Chemosphere88: 377–383. https://doi.org/10.1016/j.chemosphere.2012.02.04910.1016/j.chemosphere.2012.02.04922436588
DOI: https://doi.org/10.2478/intox-2018-0011 | Journal eISSN: 1337-9569 | Journal ISSN: 1337-6853
Language: English
Page range: 148 - 154
Submitted on: Jan 14, 2018
Accepted on: Feb 17, 2018
Published on: Mar 2, 2019
Published by: Slovak Academy of Sciences, Institute of Experimental Pharmacology & Toxicology, Centre of Experimental Medicine
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Rafael C. Lajmanovich, Paola M. Peltzer, Andrés M. Attademo, Carlina L. Colussi, Candela S. Martinuzzi, published by Slovak Academy of Sciences, Institute of Experimental Pharmacology & Toxicology, Centre of Experimental Medicine
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.