References
- Topalovic D, Das N, Burgel PR, et al. Artificial intelligence–enabled spirometry diagnostics in respiratory medicine. Eur Respir J. 2019;53(4):1801660.
- Walsh SLF, Calandriello L, Silva M, Sverzellati N. Deep learning for classification of idiopathic interstitial pneumonias on high-resolution computed tomography. Lancet Respir Med. 2018;6(11):837–845.
- Ardila D, Kiraly AP, Bharadwaj S, et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest CT. Nat Med. 2019;25(6):954–961.
- Kheirandish-Gozal L, Gozal D. Predicting obstructive sleep apnea severity: AI approaches in children and adults. Sleep Med Clin. 2019;14(3):387–395.
- Borkowski M, Mędrzycka-Dąbrowska W, Krajewska-Kułak E. Machine learning techniques for the diagnosis of OSA: A review. Int J Environ Res Public Health. 2021;18(5):2540.
- Obermeyer Z, Powers B, Vogeli C, Mullainathan S. Dissecting racial bias in an algorithm used to manage health. Science. 2019;366(6464):447–453.
- London AJ. AI and black-box medical decisions: Accuracy vs. explainability. Hastings Cent Rep. 2019;49(1):15–21.
- Gerke S, Minssen T, Cohen G. Ethical and legal challenges of AI-driven healthcare. In: AI in Healthcare. Academic Press; 2020:295–336.