Have a personal or library account? Click to login
Targeted Immunomodulation Therapies as New Options to Cure Urinary Tract Infections Cover

Targeted Immunomodulation Therapies as New Options to Cure Urinary Tract Infections

Open Access
|Oct 2022

References

  1. 1. World Health Organization. Antibiotic resistance. Fact sheets [updated 17 Nov 2021]. Available: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance
  2. 2. Foxman B. The epidemiology of urinary tract infection. Nat. Rev. Urol. 2010;7, 653-58.10.1038/nrurol.2010.190
  3. 3. Wagenlehner F.M., Bartoletti R., Cek M., et al. Antibiotic stewardship: a call for action by the urologic community. Eur Urol. 2013;64(3): 358–360. 10.1016/j.eururo.2013.05.044.10.1016/j.eururo.2013.05.044
  4. 4. Stapleton A. E., Wagenlehner F. M. E., Mulgirigama A., et al. Escherichia coli resistance to fluoroquinolones in community-acquired uncomplicated urinary tract infection in women: a systematic review. Antimicrob. Agents Chemother. 2020;64, e00862-20.
  5. 5. Edelsberg J., Weycker D, Barron R., et al. Prevalence of antibiotic resistance in US hospitals. Diagn. Microbiol. Infect. Dis. 2014;78, 255–262.
  6. 6. Butler D., Ambite I., Wan M.L.Y. et al. Immunomodulation therapy offers new molecular strategies to treat UTI. Nat Rev Uro. 2022; 19, 419–437.
  7. 7. Foxman B., Barlow R., D’Arcy H., Gillespie B., et al. Urinary tract infection: self-reported incidence and associated costs. Ann Epidemiol. 2000;10(8): 509–515.10.1016/S1047-2797(00)00072-7
  8. 8. Kumar S., Dave A., Wolf B., et al. Urinary tract infections. Dis Mon. 2015;61(2): 45–59.10.1016/j.disamonth.2014.12.00225732782
  9. 9. Ambite I., Puthia M., Nagy K., et al. Molecular Basis of Acute Cystitis Reveals Susceptibility Genes and Immunotherapeutic Targets. PLoS Pathog. 2016 Oct 12;12(10):e1005848.10.1371/journal.ppat.1005848506133327732661
  10. 10. Rydstrom G. The molecular basis of acute cystitis; IL-1beta and inflammasome dysregulation. At Molecular UTI Conference (Urinary Tract Infection; molecular advances and novel therapies); 2014; Malmö, Sweden accesed online 16 Aug 2022.
  11. 11. Kumar H., Kawai T., Akira S. Pathogen recognition by the innate immune system. Int. Rev. Immunol. 2011;30, 16–34.
  12. 12. Lacerda Mariano L., Ingersoll M. A. The immune response to infection in the bladder. Nat. Rev. Urol. 2020;17, 439–458.
  13. 13. Nielubowicz GR.,Mobley HL. Host-pathogen interactions in urinary tract infection. Nat. Rev. Urol. 2010;7:430–441.
  14. 14. Song J., Abraham SN. Innate and adaptive immune responses in the urinary tract. Eur J Clin Invest. 2008 Oct;38 Suppl 2:21-8.10.1111/j.1365-2362.2008.02005.x18826478
  15. 15. Ambite I., Butler D., Wan MLY., et al. Molecular determinants of disease severity in urinary tract infection. Nat Rev Urol. 2021 Aug;18(8):468-486.10.1038/s41585-021-00477-x820430234131331
  16. 16. Klein, R. D., Hultgren S. J. Urinary tract infections: microbial pathogenesis, host-pathogen interactions and new treatment strategies. Nat. Rev. Microbiol. 2020;18,211–26.
  17. 17. Sundac L., Dando SJ., Sullivan MJ., et al. Protein-based profiling of the immune response to uropathogenic Escherichia coli in adult patients immediately following hospital admission for acute cystitis. Pathog Dis 2016;74 (6):ftw062.10.1093/femspd/ftw06227354295
  18. 18. Frendéus B., Godaly G., Hang L., et al. Interleukin-8 Receptor Deficiency Confers Susceptibility to Acute Pyelonephritis, J Exp Med 2000;192 (6): 881–890.
  19. 19. Smithson A., Sarrias MR., Barcelo J., et al. Expression of interleukin-8 receptors (CXCR1 and CXCR2) in premenopausal women with recurrent urinary tract infections. Clin Diagn Lab Immunol. 2005 Dec;12(12): 1358-63.10.1128/CDLI.12.12.1358-1363.2005131708116339057
  20. 20. Dinarello CA. Interleukin-1beta and the autoinflamma-tory diseases. N Engl J Med. 2009;360(23): 2467–2470.10.1056/NEJMe081101419494224
  21. 21. Broz P., Dixit V.M. Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol. 2016;16:407–420.10.1038/nri.2016.5827291964
  22. 22. Nagamatsu K., Hannan TJ., Guest RL., et al. Dysregulation of Escherichia coli alpha-hemolysin expression alters the course of acute and persistent urinary tract infection. Proc Natl Acad Sci USA. 2015;112, E871–880.
  23. 23. Jung JH., Hong H.J., Gharderpour A., et al. Differential interleukin-1β induction by uropathogenic Escherichia coli correlates with its phylotype and serum C-reactive protein levels in Korean infants. Sci Rep. 2019;9, 15654.
  24. 24. Schaale K., Peters KM., Murthy AM., et al. Strain- and host species-specific inflammasome activation, IL-1beta release, and cell death in macrophages infected with uropathogenic Escherichia coli. Mucosal Immunol. 2016;9, 124–136.
  25. 25. Butler D.S.C., Ambite I., Nagy K. Neuroepithelial control of mucosal inflammation in acute cystitis. Sci Rep. 2018;8:11015.10.1038/s41598-018-28634-0605461030030504
  26. 26. Wullt B., Butler DSC., Ambite I., et al. Immunomodulation-A Molecular Solution to Treating Patients with Severe Bladder Pain Syndrome? Eur Urol Open Sci. 2021 Aug 6;31:49-58.10.1016/j.euros.2021.07.003838529334467240
  27. 27. Kamo I., Doi T. Effect of TAK-637, a tachykinin NK1-receptor antagonist, on lower urinary tract function in cats. Jpn J Pharmacol. 2001 Jun;86(2):165-9.10.1254/jjp.86.16511459118
  28. 28. Green SA., Alon A., Ianus J., et al. Efficacy and safety of a neurokinin-1 receptor antagonist in postmenopausal women with overactive bladder with urge urinary incontinence. J Urol. 2006 Dec;176(6 Pt 1):2535-40.10.1016/j.juro.2006.08.01817085151
  29. 29. Liu BK., Jin XW., Lu HZ., et al. The Effects of Neurokinin-1 Receptor Antagonist in an Experimental Autoimmune Cystitis Model Resembling Bladder Pain Syndrome/Interstitial Cystitis. Inflammation. 2019 Feb;42(1):246-254.10.1007/s10753-018-0888-230196377
  30. 30. Molina-Quiroz RC., Silva-Valenzuela C., Brewster J., et al. Cyclic AMP Regulates Bacterial Persistence through Repression of the Oxidative Stress Response and SOS-Dependent DNA Repair in Uropathogenic Escherichia coli. mBio. 2018 Jan 9;9(1):e02144-17.10.1128/mBio.02144-17576074329317513
  31. 31. Nelius T., Winter C., Willingham J., et al. Immune-Based Treatment Strategies for Patients with Recurrent Urinary Tract Infections – Where Are We?. In: Nelius, T., editor. Recent Advances in the Field of Urinary Tract Infections [Internet]. London: IntechOpen; 2013 [cited 2022 Aug 16]. Available: https://www.intichopen.com10.5772/52913
  32. 32. Abraham SN., Miao Y. The nature of immune responses to urinary tract infections. Nat Rev Immunol. 2015 Oct;15(10):655-63.10.1038/nri3887492631326388331
  33. 33. Chakraborty A., Haque S.M., Dey D. et al. Detection of UTI Pathogen-Killing Properties of Coleus forskohlii from Tissue Cultured In vitro and Ex vitro Plants. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 2022;92, 157–169.
  34. 34. Bishop BL., Duncan MJ., Song J., et al. Cyclic AMP-regulated exocytosis of Escherichia coli from infected bladder epithelial cells. Nat Med. 2007 May;13(5):625-30.10.1038/nm157217417648
  35. 35. Ching CB., Gupta S., Li B., et al. Interleukin-6/Stat3 signaling has an essential role in the host antimicrobial response to urinary tract infection. Kidney Int. 2018 Jun;93(6):1320-1329.10.1016/j.kint.2017.12.006596798629475562
  36. 36. Hunstad DA., Justice SS., Hung CS., et al. Suppression of bladder epithelial cytokine responses by uropathogenic Escherichia coli. Infect Immun. 2005;73:3999–4006.10.1128/IAI.73.7.3999-4006.2005116857115972487
  37. 37. Yun H, Xie F, Delzell E, et al. Comparative Risk of Hospitalized Infection Associated With Biologic Agents in Rheumatoid Arthritis Patients Enrolled in Medicare. Arthritis Rheumatol. 2016;68:56–66.10.1002/art.3939926315675
  38. 38. Godaly G., Proudfoot AE., Offord RE., et al. Role of epithelial interleukin-8 (IL-8) and neutrophil IL-8 receptor A in Escherichia coli-induced transuroepithelial neutrophil migration. Infect Immun. 1997 Aug;65(8):3451-6.10.1128/iai.65.8.3451-3456.19971754889234811
  39. 39. Godaly G., Hang L., Frendéus B., et al. Transepithelial neutrophil migration is CXCR1 dependent in vitro and is defective in IL-8 receptor knockout mice. J Immunol. 2000 Nov 1;165(9):5287-94.10.4049/jimmunol.165.9.528711046063
  40. 40. Hang L., Frendeus B., Godaly G., et al. Interleukin-8 receptor knockout mice have subepithelial neutrophil entrapment and renal scarring following acute pyelonephritis. J. Infect. Dis. 2000. 182:1738-1748.10.1086/31759911069247
DOI: https://doi.org/10.2478/inmed-2022-0215 | Journal eISSN: 1220-5818 | Journal ISSN: 1220-5818
Language: English
Page range: 17 - 22
Published on: Oct 15, 2022
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Cristiana David, Paula Popescu, Daniela Rădulescu, Ileana Adela Văcăroiu, published by Romanian Society of Internal Medicine
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.