Have a personal or library account? Click to login
Review of Current Practices and Preliminary Recommendations for Instrumental Singing-Voice Diagnostics Cover

Review of Current Practices and Preliminary Recommendations for Instrumental Singing-Voice Diagnostics

Open Access
|Feb 2026

References

  1. Acosta Martínez, G., & Daffern, H. (2023). Complexity of vocal vibrato in opera and jazz recordings: Insights from entropy and recurrence analyses. Journal of Voice. https://doi.org/10.1016/j.jvoice.2023.11.020
  2. Alku, P., Bäckström, T., & Vilkman, E. (2002). Normalized amplitude quotient for parametrization of the glottal flow. The Journal of the Acoustical Society of America, 112(2), 701–710. https://doi.org/10.1121/1.1490365
  3. Allen, J. E. (2019). Editorial: Going with the flow. Current Opinion in Otolaryngology & Head & Neck Surgery, 27(6), 431–432. https://doi.org/10.1097/MOO.0000000000000592
  4. Baken, R. J., & Orlikoff, R. F. (2000). Clinical measurement of speech and voice (2nd ed.). Singular Publishing Group.
  5. Baker, C. P. (2023). Female adolescent voice change: Exploring tools for instrumental singing-voice analysis [University of Auckland]. https://hdl.handle.net/2292/63774
  6. Baker, C. P., Brockmann-Bauser, M., Purdy, S. C., & Rakena, T. O. (2023). High and wide: An in-silico investigation of frequency, intensity, and vibrato effects on widely applied acoustic voice perturbation and noise measures. Journal of Voice. https://doi.org/10.1016/j.jvoice.2023.10.007
  7. Baker, C. P., Miles, A., Allen, J., & Herbst, C. T. (2025). Six-pack singing: On associations between anterior abdominal muscle activity and vital capacity percentage. Journal of Voice. https://doi.org/10.1016/j.jvoice.2025.03.039
  8. Baker, C. P., Purdy, S. C., Rakena, T. O., & Bonnini, S. (2023a). It sounds like it feels: Preliminary exploration of an aeroacoustic diagnostic protocol for singers. Journal of Clinical Medicine, 12(15), 5130. https://doi.org/10.3390/jcm12155130
  9. Baker, C. P., Purdy, S. C., Rakena, T. O., & Bonnini, S. (2023b, August 24). An aeroacoustic index for objectively measuring singing-voice fatigue: A proof-of-concept study. 32nd World Congress of the IALP.
  10. Baker, C. P., Sundberg, J., Purdy, S. C., Rakena, T. O., & Leão, S. H. de S. (2024). CPPS and voice-source parameters: Objective analysis of the singing voice. Journal of Voice, 38(3), 549–560. https://doi.org/10.1016/j.jvoice.2021.12.010
  11. Barlow, C., & LoVetri, J. (2010). Closed quotient and spectral measures of female adolescent singers in different singing styles. Journal of Voice, 24(3), 314–318. https://doi.org/10.1016/j.jvoice.2008.10.003
  12. Barsties v Latoszek, B., Maryn, Y., Gerrits, E., & De Bodt, M. (2017). The Acoustic Breathiness Index (ABI): A multivariate acoustic model for breathiness. Journal of Voice, 31(4), 511. e11–511.e27. https://doi.org/10.1016/j.jvoice.2016.11.017
  13. Barsties v. Latoszek, B., Müller, A., & Nasr, A. (2025). Diagnostic and treatment in voice therapy. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-70162-1
  14. Bastian, R. W., Keidar, A., & Verdolini-Marston, K. (1990). Simple vocal tasks for detecting vocal fold swelling. Journal of Voice, 4(2), 172–183. https://doi.org/10.1016/S0892-1997(05)80144-4
  15. Behlau, M., Madazio, G., & Yamasaki, R. (2023). Dynamic vocal analysis: Vocal functionality evaluation. CoDAS, 35(5). https://doi.org/10.1590/2317-1782/20232021083en
  16. Boersma, P., & Weenink, D. (2023). Praat: Doing phonetics by computer (Version 6.3.10) [Computersoftware]. Phonetic Sciences, University of Amsterdam. https://praat.org
  17. Bonjyotsna, A., & Bhuyan, M. (2016). Analytical study of vocal vibrato and mordent of Indian popular singers. Journal of Voice, 30(6), 764.e11-764.e22. https://doi.org/10.1016/j.jvoice.2015.10.010
  18. Bouhuys, A., Mead, J., Proctor, D. F., & Stevens, K. N. (1968). Pressure-flow events during singing. Annals of the New York Academy of Sciences, 155(1), 165–176. https://doi.org/10.1111/j.1749-6632.1968.tb56760.x
  19. Bozeman, K. (2013). Practical vocal acoustics: Pedagogical applications for teachers and singers. Pendragon Press.
  20. Brockmann, M., Drinnan, M. J., Storck, C., & Carding, P. N. (2011). Reliable jitter and shimmer measurements in voice clinics: The relevance of vowel, gender, vocal intensity, and fundamental frequency effects in a typical clinical task. Journal of Voice, 25(1), 44–53. https://doi.org/10.1016/j.jvoice.2009.07.002
  21. Brockmann, M., Storck, C., Carding, P. N., & Drinnan, M. J. (2008). Voice loudness and gender effects on jitter and shimmer in healthy adults. Journal of Speech, Language, and Hearing Research, 51(5), 1152–1160. https://doi.org/10.1044/1092-4388(2008/06-0208)
  22. Brockmann‐Bauser, M. (2024). Instrumental analysis of voice. In M. J. Ball, N. Müller, & E. Spencer (Eds.), The Handbook of Clinical Linguistics (2nd ed., pp. 523–537). Wiley Blackwell. https://doi.org/10.1002/9781119875949.ch36
  23. Brockmann-Bauser, M., Bohlender, J. E., & Mehta, D. D. (2018). Acoustic perturbation measures improve with increasing vocal intensity in individuals with and without voice disorders. Journal of Voice, 32(2), 162–168. https://doi.org/10.1016/j.jvoice.2017.04.008
  24. Brockmann-Bauser, M., Van Stan, J. H., Sampaio, M. C., Bohlender, J. E., Hillman, R. E., & Mehta, D. D. (2021). Effects of vocal intensity and fundamental frequency on cepstral peak prominence in patients with voice disorders and vocally healthy controls. Journal of Voice, 35(3), 411–417. https://doi.org/10.1016/j.jvoice.2019.11.015
  25. Butte, C. J., Zhang, Y., Song, H., & Jiang, J. J. (2009). Perturbation and nonlinear dynamic analysis of different singing styles. Journal of Voice, 23(6), 647–652. https://doi.org/10.1016/j.jvoice.2008.02.004
  26. Calvache Mora, C. A., Cantor-Cutiva, L. C., Hunter, E. J., Guzman, M., & Solaque, L. (2023). Systematic review of literature on vocal demand response: Understanding physiology, measurements, and associated factors. Folia Phoniatrica et Logopaedica, 1–1. https://doi.org/10.1159/000531678
  27. Chang, A., & Karnell, M. P. (2004). Perceived phonatory effort and phonation threshold pressure across a prolonged voice loading task: A study of vocal fatigue. Journal of Voice, 18(4), 454–466. https://doi.org/10.1016/j.jvoice.2004.01.004
  28. Childers, D. G., & Lee, C. K. (1991). Vocal quality factors: Analysis, synthesis, and perception. The Journal of the Acoustical Society of America, 90(5), 2394–2410. https://doi.org/10.1121/1.402044
  29. Childs, L. F., D’Oto, A., Beams, D. R., Hynan, L., & Mau, T. (2023). Association of genre of singing and phonotraumatic vocal fold lesions in singers. The Laryngoscope, 133(7), 1683–1689. https://doi.org/10.1002/lary.30414
  30. Cleveland, T., & Sundberg, J. (1988). Acoustic analysis of three male voices of different quality. SMAC 83. Proceedings of the Stockholm International Music Acoustics Conference, 143–156.
  31. Cohen, S. M., Jacobson, B. H., Garrett, C. G., Noordzij, J. P., Stewart, M. G., Attia, A., Ossoff, R. H., & Cleveland, T. F. (2007). Creation and validation of the singing voice handicap index. Annals of Otology, Rhinology & Laryngology, 116(6), 402–406. https://doi.org/10.1177/000348940711600602
  32. Cohen, S. M., Statham, M., Rosen, C. A., & Zullo, T. (2009). Development and validation of the Singing Voice Handicap-10. The Laryngoscope, 119(9), 1864–1869. https://doi.org/10.1002/lary.20580
  33. Dejonckere, P. H., Giordano, A., Schoentgen, J., Fraj, S., Bocchi, L., & Manfredi, C. (2012). To what degree of voice perturbation are jitter measurements valid? A novel approach with synthesized vowels and visuo-perceptual pattern recognition. Biomedical Signal Processing and Control, 7(1), 37–42. https://doi.org/10.1016/j.bspc.2011.05.002
  34. DeJonckere, P. H., & Lebacq, J. (2022). Vocal fold collision speed in vivo: The effect of loudness. Journal of Voice, 36(5), 608–621. https://doi.org/10.1016/j.jvoice.2020.08.025
  35. Devin, Z. K. I. (2023). Vocal fatigue in collegiate singers: An exploratory investigation towards a new assessment protocol [ProQuest Dissertations & Theses Global]. https://www.pro-quest.com/dissertations-theses/vocal-fatigue-collegiate-singers-exploratory/docview/2911044976/se-2
  36. D’haeseleer, E., Leyns, C., Meerschman, I., Thyssen, J., Dewaele, F., & Van Lierde, K. (2025). EASE-NL: Cross-cultural adaptation and validation of the Dutch version of the Evaluation of Ability to Sing Easily. Journal of Voice, 39(2), 568.e19-568. e27. https://doi.org/10.1016/j.jvoice.2022.10.003
  37. Dippold, S., Voigt, D., Richter, B., & Echternach, M. (2015). High-speed imaging analysis of register transitions in classically and jazz-trained male voices. Folia Phoniatrica et Logopaedica, 67(1), 21–28. https://doi.org/10.1159/000381095
  38. Echternach, M., Burk, F., Burdumy, M., Herbst, C. T., Köberlein, M., Döllinger, M., & Richter, B. (2017). The influence of vocal fold mass lesions on the passaggio region of professional singers. The Laryngoscope, 127(6), 1392–1401. https://doi.org/10.1002/lary.26332
  39. Enflo, L., Sundberg, J., & McAllister, A. (2013). Collision and phonation threshold pressures before and after loud, prolonged vocalization in trained and untrained voices. Journal of Voice, 27(5), 527–530. https://doi.org/10.1016/j.jvoice.2013.03.008
  40. Fraile, R., & Godino-Llorente, J. I. (2014). Cepstral peak prominence: A comprehensive analysis. Biomed Signal Process Control, 14, 42–54. https://doi.org/10.1016/j.bspc.2014.07.001
  41. Gauffin, J., & Sundberg, J. (1989). Spectral correlates of glottal voice source waveform characteristics. Journal of Speech, Language, and Hearing Research, 32(3), 556–565. https://doi.org/10.1044/jshr.3203.556
  42. Gillivan-Murphy, P., Miller, N., & Carding, P. (2019). Voice tremor in Parkinson’s disease: An acoustic study. Journal of Voice, 33(4), 526–535. https://doi.org/10.1016/j.jvoice.2017.12.010
  43. Gramming, P., & Sundberg, J. (1988). Spectrum factors relevant to phonetogram measurement. The Journal of the Acoustical Society of America, 83(6), 2352–2360. https://doi.org/10.1121/1.396366
  44. Granqvist, S. (2025a). Description and validation of RecVox – A free software for real-time phonetography. https://www.tolvan.com/recvox/Validation_of_RecVox.pdf
  45. Granqvist, S. (2025b). RecVox. Tolvan Data. https://www.tolvan.com/index.php?page=/recvox/recvox.php
  46. Granqvist, S. (2025c). Sopran. Tolvan Data. www.tolvan.com
  47. Gunjawate, D. R., Ravi, R., & Bellur, R. (2018). Acoustic analysis of voice in singers: A systematic review. Journal of Speech, Language, and Hearing Research, 61, 40–51. https://doi.org/10.1044/2017_JSLHR-S-17-0145
  48. Hammarberg, B., Fritzell, B., Gauffin, J., Sundberg, J., & Wedin, L. (1980). Perceptual and acoustic correlates of abnormal voice qualities. Acta Oto-Laryngologica, 90(1–6), 441–451. https://doi.org/10.3109/00016488009131746
  49. Hassan, E. M., Abdel Hady, A. F., Shohdi, S. S., Eldessouky, H. M., & Din, M. H. B. (2021). Assessment of dysphonia: Cepstral analysis versus conventional acoustic analysis. Logopedics Phoniatrics Vocology, 46(3), 99–109. https://doi.org/10.1080/14015439.2020.1767202
  50. Hejná, M., Šturm, P., Tylečkova, L., & Bořil, T. (2019). Normophonic breathiness in Czech and Danish: Are females breathier than males? Journal of Voice, 35(3), 498.e1−498.e22. https://doi.org/10.1016/j.jvoice.2019.10.019
  51. Heman-Ackah, Y. D., Heuer, R. J., Michael, D. D., Ostrowski, R., Horman, M., Baroody, M. M., Hillenbrand, J., & Sataloff, R. T. (2003). Cepstral peak prominence: A more reliable measure of dysphonia. Annals of Otology, Rhinology & Laryngology, 112(4), 324–333. https://doi.org/10.1177/000348940311200406
  52. Herbst, C. T. (2017). A review of singing voice subsystem interactions—Toward an extended physiological model of “support.” Journal of Voice, 31(2), 249.e13-249.e19. https://doi.org/10.1016/j.jvoice.2016.07.019
  53. Herbst, C. T., Hess, M., Müller, F., Švec, J. G., & Sundberg, J. (2015). Glottal adduction and subglottal pressure in singing. Journal of Voice, 29(4), 391–402. https://doi.org/10.1016/j.jvoice.2014.08.009
  54. Herbst, C. T., Unger, J., Herzel, H., Švec, J. G., & Lohscheller, J. (2016). Phasegram analysis of vocal fold vibration documented with laryngeal high-speed video endoscopy. Journal of Voice, 30(6), 771.e1-771.e15. https://doi.org/10.1016/j.jvoice.2015.11.006
  55. Hertegård, S., Gauffin, J., & Lindestad, P.-Å. (1995). A comparison of subglottal and intraoral pressure measurements during phonation. Journal of Voice, 9(2), 149–155. https://doi.org/10.1016/S0892-1997(05)80248-6
  56. Hillenbrand, J., Cleveland, R. A., & Erickson, R. L. (1994). Acoustic correlates of breathy vocal quality. Journal of Speech, Language, and Hearing Research, 37(4), 769–779. https://doi.org/10.1044/jshr.3704.769
  57. Hillenbrand, J., & Houde, R. A. (1996). Acoustic correlates of breathy vocal quality: Dysphonic voices and continuous speech. Journal of Speech, Language, and Hearing Research, 39(2), 311–321. https://doi.org/10.1044/jshr.3902.311
  58. Hillman, R. E., Stepp, C. E., Van Stan, J. H., Zañartu, M., & Mehta, D. D. (2020). An updated theoretical framework for vocal hyperfunction. American Journal of Speech-Language Pathology, 29(4), 2254–2260. https://doi.org/10.1044/2020_AJSLP-20-00104
  59. Horii, Y. (1989a). Acoustic analysis of vocal vibrato: A theoretical interpretation of data. Journal of Voice, 3(1), 36–43. https://doi.org/10.1016/S0892-1997(89)80120-1
  60. Horii, Y. (1989b). Frequency modulation characteristics of sustained /a/sung in vocal vibrato. Journal of Speech, Language, and Hearing Research, 32(4), 829–836. https://doi.org/10.1044/jshr.3204.829
  61. Hunter, E. J., Cantor-Cutiva, L. C., van Leer, E., van Mersbergen, M., Nanjundeswaran, C. D., Bottalico, P., Sandage, M. J., & Whitling, S. (2020). Toward a consensus description of vocal effort, vocal load, vocal loading, and vocal fatigue. Journal of Speech, Language, and Hearing Research, 63(2), 509–532. https://doi.org/10.1044/2019_JSLHR-19-00057
  62. Iwata, S., Von Leden, H., & Williams, D. (1972). Air flow measurement during phonation. Journal of Communication Disorders, 5(1), 67–79. https://doi.org/10.1016/0021-9924(72)90033-0
  63. KayPentax. (n.d.-a). Multi-Dimensional Voice Program (MDVP). Kay Elemetrics Corporation.
  64. KayPentax. (n.d.-b). Phonatory Aerodynamic System (PAS). Kay Elemetrics Corporation.
  65. Kob, M., Henrich, N., Herzel, H., Howard, D., Tokuda, I., & Wolfe, J. (2011). Analysing and understanding the singing voice: Recent progress and open questions. Current Bioinformatics, 6(3), 362–374. https://doi.org/10.2174/157489311796904709
  66. Lã, F. M. B., & Fiuza, M. B. (2022). Real-time visual feedback in singing pedagogy: Current trends and future directions. Applied Sciences, 12(21), 10781. https://doi.org/10.3390/app122110781
  67. Lã, F. M. B., Silva, L. S., & Granqvist, S. (2023). Long-Term Average Spectrum Characteristics of Portuguese Fado-Canção from Coimbra. Journal of Voice, 37(4), 631.e7-631.e15. https://doi.org/10.1016/j.jvoice.2021.03.005
  68. Ladefoged, P., & McKinney, N. P. (1963). Loudness, sound pressure, and subglottal pressure in speech. The Journal of the Acoustical Society of America, 35(4), 454–460. https://doi.org/10.1121/1.1918503
  69. Lamarche, A. (2009). Putting the singing voice on the map [Doctoral Thesis, KTH]. https://www.speech.kth.se/~anick/elec_tmh.pdf
  70. Lamarche, A., Ternström, S., & Hertegård, S. (2009). Not just sound: Supplementing the voice range profile with the singer’s own perceptions of vocal challenges. Logo-pedics Phoniatrics Vocology, 34(1), 3–10. https://doi.org/10.1080/14015430802239759
  71. Lamarche, A., Ternström, S., & Pabon, P. (2010). The singer’s voice range profile: Female professional opera soloists. Journal of Voice, 24(4), 410–426. https://doi.org/10.1016/j.jvoice.2008.12.008
  72. Lechien, J. R., Geneid, A., Bohlender, J. E., Cantarella, G., Avellaneda, J. C., Desuter, G., Sjogren, E. V., Finck, C., Hans, S., Hess, M., Oguz, H., Remacle, M. J., Schneider-Stickler, B., Tedla, M., Schindler, A., Vilaseca, I., Zabrodsky, M., Dikkers, F. G., & Crevier-Buchman, L. (2023). Consensus for voice quality assessment in clinical practice: guidelines of the European Laryngological Society and Union of the European Phoniatricians. European Archives of Oto-Rhino-Laryngology. https://doi.org/10.1007/s00405-023-08211-6
  73. Lycke, H., & Siupsinskiene, N. (2016). Voice range profiles of singing students: The effects of training duration and institution. Folia Phoniatrica et Logopaedica, 68(2), 53–59. https://doi.org/10.1159/000448136
  74. Manfredi, C., Barbagallo, D., Baracca, G., Orlandi, S., Bandini, A., & Dejonckere, P. H. (2015). Automatic assessment of acoustic parameters of the singing voice: Application to professional western operatic and jazz singers. Journal of Voice, 29(4), 517. e1-517.e9. https://doi.org/10.1016/j.jvoice.2014.09.014
  75. Manfredi, C., Giordano, A., Schoentgen, J., Fraj, S., Bocchi, L., & Dejonckere, P. H. (2012). Perturbation measurements in highly irregular voice signals: Performances/validity of analysis software tools. Biomedical Signal Processing and Control, 7(4), 409–416. https://doi.org/10.1016/j.bspc.2011.06.004
  76. Maryn, Y., De Bodt, M., Barsties, B., & Roy, N. (2013). The value of the Acoustic Voice Quality Index as a measure of dysphonia severity in subjects speaking different languages. European Archives of Oto-Rhino-Laryngology. https://doi.org/10.1007/s00405-013-2730-7
  77. Maryn, Y., De Bodt, M., & Roy, N. (2010). The Acoustic Voice Quality Index: Toward improved treatment outcomes assessment in voice disorders. Journal of Communication Disorders, 43(3), 161–174. https://doi.org/10.1016/j.jcomdis.2009.12.004
  78. Maryn, Y., Dwenger, K., Kaufmann, S., & Barkmeier-Kraemer, J. (2025). Reliability and diagnostic accuracy of semi-automated and automated acoustic quantification of vocal tremor characteristics. Journal of Speech, Language, and Hearing Research, 1–20. https://doi.org/10.1044/2025_JSLHR-24-00467
  79. Maryn, Y., Leblans, M., Zarowski, A., & Barkmeier-Kraemer, J. (2019). Objective acoustic quantification of perceived voice tremor severity. Journal of Speech, Language, and Hearing Research, 62(10), 3689–3705. https://doi.org/10.1044/2019_JSLHR-S-19-0024
  80. Maryn, Y., & Weenink, D. (2015). Objective dysphonia measures in the program PRAAT: Smoothed cepstral peak prominence and Acoustic Voice Quality Index. Journal of Voice, 29(1), 35–43. https://doi.org/10.1016/j.jvoice.2014.06.015
  81. McCoy, S. J. (2012). Your Voice: An inside view (2nd ed.). Inside View Press.
  82. Miller, D. G., Schutte, H. K., & Doing, J. (2001). Soft phonation in the male singing voice. Journal of Voice, 15(4), 483–491. https://doi.org/10.1016/S0892-1997(01)00048-0
  83. Miller, R. (1996). The structure of singing: System and art in vocal technique. Schirmer.
  84. Mitchell, H. F., & Kenny, D. T. (2010). Change in vibrato rate and extent during tertiary training in classical singing students. Journal of Voice, 24(4), 427–434. https://doi.org/10.1016/j.jvoice.2008.12.003
  85. Morelli, M. S., Orlandi, S., & Manfredi, C. (2021). BioVoice: A multipurpose tool for voice analysis. Biomedical Signal Processing and Control, 64, 102302. https://doi.org/10.1016/j.bspc.2020.102302
  86. Mori, M. C., Francis, D. O., & Song, P. C. (2017). Identifying occupations at risk for laryngeal disorders requiring specialty voice care. Otolaryngology – Head and Neck Surgery, 157(4), 670–675. https://doi.org/10.1177/0194599817726528
  87. Murray, E. H., & Woodnorth, G. H. (2020). Clinical approach to acoustic assessment. In J. S. McMurray, M. R. Hoffmann, & M. N. Braden (Eds.), Multidisciplinary management of pediatric voice and swallowing disorders (pp. 83–88). Springer. https://doi.org/10.1007/978-3-030-26191-7_9
  88. Murton, O., Hillman, R., & Mehta, D. (2020). Cepstral peak prominence values for clinical voice evaluation. American Journal of Speech-Language Pathology, 29(3), 1596–1607. https://doi.org/10.1044/2020_AJSLP-20-00001
  89. Nandamudi, S. (2017). Aerodynamics of Vocal Vibrato [Doctoral dissertation, Bowling Green State University]. OhioLINK Electronic Theses and Dissertations Center. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1499427478103556
  90. Nestorova, T., Brandner, M., Gingras, B., & Herbst, C. T. (2023). Vocal vibrato characteristics in historical and contemporary opera, operetta, and Schlager. Journal of Voice. https://doi.org/10.1016/j.jvoice.2022.12.027
  91. Nix, J., Perna, N., James, K., & Allen, S. (2016). Vibrato rate and extent in college music majors: A multicenter study. Journal of Voice, 30(6), 756.e31-756.e41. https://doi.org/10.1016/j.jvoice.2015.09.006
  92. Nordenberg, M., & Sundberg, J. (2004). Effect on LTAS of vocal loudness variation. Logopedics Phoniatrics Vocology, 29(4), 183–191. https://doi.org/10.1080/14015430410004689
  93. Oates, J. M., Bain, B., Davis, P., Chapman, J., & Kenny, D. (2006). Development of an auditory-perceptual rating instrument for the operatic singing voice. Journal of Voice, 20(1), 71–81. https://doi.org/10.1016/j.jvoice.2005.01.006
  94. Öğülmüş Uysal, M., Esen Aydinli, F., İncebay, Ö., Beşik Topçu, Ö., & Daşdöğen, Ü. (2024). Cross-cultural adaptation and validation of the Turkish version of the Evaluation of the Ability to Sing Easily (EASE-TR). Journal of Voice. https://doi.org/10.1016/j.jvoice.2024.10.016
  95. Omori, K., Kojima, H., Kakani, R., Slavit, D. H., & Blaugrund, S. M. (1997). Acoustic characteristics of rough voice: Subharmonics. Journal of Voice, 11(1), 40–47. https://doi.org/10.1016/S0892-1997(97)80022-7
  96. Orlandi, S., Dejonckere, P. H., Schoentgen, J., Lebacq, J., Rruqja, N., & Manfredi, C. (2013). Effective pre-processing of long term noisy audio recordings: An aid to clinical monitoring. Biomedical Signal Processing and Control, 8(6), 799–810. https://doi.org/10.1016/j.bspc.2013.07.009
  97. Orlikoff, R. F., & Kahane, J. C. (1991). Influence of mean sound pressure level on jitter and shimmer measures. Journal of Voice, 5(2), 113–119. https://doi.org/10.1016/S0892-1997(05)80175-4
  98. Pabon, P. (1991). Objective acoustic voice-quality parameters in the computer phonetogram. Journal of Voice, 5(3), 203–216. https://doi.org/10.1016/S0892-1997(05)80188-2
  99. Pabon, P., Stallinga, R., Södersten, M., & Ternström, S. (2014). Effects on vocal range and voice quality of singing voice training: The classically trained female voice. Journal of Voice, 28(1), 36–51. https://doi.org/10.1016/j.jvoice.2013.06.005
  100. Pabon, P., & Ternström, S. (2020). Feature maps of the acoustic spectrum of the voice. Journal of Voice, 34(1), 161.e1-161.e26. https://doi.org/10.1016/j.jvoice.2018.08.014
  101. Pabon, P., Ternström, S., & Lamarche, A. (2011). Fourier descriptor analysis and unification of voice range profile contours: Method and applications. Journal of Speech, Language, and Hearing Research, 54(3), 755–776. https://doi.org/10.1044/1092-4388(2010/08-0222)
  102. Patel, R. R., Awan, S. N., Barkmeier-Kraemer, J., Coury, M., Deliyski, D., Eadie, T., Paul, D., Švec, J. G., & Hillman, R. (2018). Recommended protocols for instrumental assessment of voice: American Speech-Language-Hearing Association expert panel to develop a protocol for instrumental assessment of vocal function. American Journal of Speech-Language Pathology, 27, 887–905. https://doi.org/10.1044/2018_AJSLP-17-0009
  103. Patel, R. R., Sandage, M. J., & Golzarri-Arroyo, L. (2023). High-speed videoendoscopic and acoustic characteristics of inspiratory phonation. Journal of Speech, Language, and Hearing Research, 66(4), 1192–1207. https://doi.org/10.1044/2022_JSLHR-22-00502
  104. Perrin, C. E., Young, V. N., Ma, Y., Rosen, C. A., Stockton, S. D., & Schneider, S. L. (2025). Singing Voice Handicap Index‐10 minimal clinically important difference: A prospective determination. The Laryngoscope, 135(2), 752–757. https://doi.org/10.1002/lary.31808
  105. Pestana, P. M., Vaz-Freitas, S., & Manso, M. C. (2017). Prevalence of voice disorders in singers: Systematic review and meta-analysis. Journal of Voice, 31(6), 722–727. https://doi.org/10.1016/j.jvoice.2017.02.010
  106. Pestana, P. M., Vaz-Freitas, S., & Manso, M. C. (2023). Risk factors for voice disorders among Fado singers: A cross-sectional study. Journal of Otorhinolaryngology, Hearing and Balance Medicine, 4(1), 5. https://doi.org/10.3390/ohbm4010005
  107. Phyland, D. J. (2014). The impact of vocal load on the vocal function of professional music theatre singers. [Doctoral Dissertation, Monash University] https://doi.org/10.4225/03/58b77627ae172
  108. Phyland, D. J. (2017). The measurement and effects of vocal load in singing performance. How much singing can a singer sing if a singer can sing songs? Perspectives of the ASHA Special Interest Groups, 2(3), 79–88. https://doi.org/10.1044/persp2.SIG3.79
  109. Phyland, D. J., & Miles, A. (2019). Occupational voice is a work in progress: Active risk management, habilitation and rehabilitation. Current Opinion in Otolaryngology & Head & Neck Surgery, 27(6), 439–447. https://doi.org/10.1097/MOO.0000000000000584
  110. Phyland, D. J., Pallant, J. F., Benninger, M. S., Thibeault, S. L., Greenwood, K. M., Smith, J. A., & Vallance, N. (2013). Development and preliminary validation of the EASE: A tool to measure perceived singing voice function. Journal of Voice, 27(4), 454–462. https://doi.org/10.1016/j.jvoice.2013.01.019
  111. Phyland, D. J., Pallant, J. F., Thibeault, S. L., Benninger, M. S., Vallance, N., & Smith, J. A. (2014). Measuring vocal function in professional music theater singers: Construct validation of the Evaluation of the Ability to Sing Easily (EASE). Folia Phoniatrica et Logopaedica, 66(3), 100–108. https://doi.org/10.1159/000366202
  112. Plexico, L. W., Sandage, M. J., & Faver, K. Y. (2011). Assessment of phonation threshold pressure: A critical review and clinical implications. American Journal of Speech-Language Pathology, 20(4), 348–366. https://doi.org/10.1044/1058-0360(2011/10-0066)
  113. Powell, M. E., Deliyski, D. D., Zeitels, S. M., Burns, J. A., Hill-man, R. E., Gerlach, T. T., & Mehta, D. D. (2020). Efficacy of videostroboscopy and high-speed videoendoscopy to obtain functional outcomes from perioperative ratings in patients with vocal fold mass lesions. Journal of Voice, 34(5), 769–782. https://doi.org/10.1016/j.jvoice.2019.03.012
  114. Prebil, N., Hočevar Boltežar, I., & Šereg Bahar, M. (2020). Risk factors for voice problems in professional actors and singers. Slovenian Journal of Public Health, 59(2), 92–98. https://doi.org/10.2478/sjph-2020-0012
  115. Ramig, L. A., & Shipp, T. (1987). Comparative measures of vocal tremor and vocal vibrato. Journal of Voice, 1(2), 162–167. https://doi.org/10.1016/S0892-1997(87)80040-1
  116. Rothenberg, M. (1973). A new inverse-filtering technique for deriving the glottal air flow waveform during voicing. The Journal of the Acoustical Society of America, 53(6), 1632–1645. https://doi.org/10.1121/1.1913513
  117. Rruqja, N., Dejonckere, P. H., Cantarella, G., Schoentgen, J., Orlandi, S., Barbagallo, S. D., & Manfredi, C. (2014). Testing software tools with synthesized deviant voices for medicolegal assessment of occupational dysphonia. Biomedical Signal Processing and Control, 13, 71–78. https://doi.org/10.1016/j.bspc.2014.03.011
  118. Sampaio, M. C., Bohlender, J. E., & Brockmann–Bauser, M. (2021). Fundamental frequency and intensity effects on cepstral measures in vowels from connected speech of speakers with voice disorders. Journal of Voice, 35(3), 422–431. https://doi.org/10.1016/j.jvoice.2019.11.014
  119. Sampaio, M. C., Masson, M. L. V., Soares, M. F. de P., Bohlender, J. E., & Brockmann-Bauser, M. (2020). Effects of fundamental frequency, vocal intensity, sample duration, and vowel context in cepstral and spectral measures of dysphonic voices. Journal of Speech, Language, and Hearing Research, 63(5), 1326–1339. https://doi.org/10.1044/2020_JSLHR-19-00049
  120. Sangiorgi, T., Manfredi, C., & Bruscaglioni, P. (2009). Objective analysis of the singing voice as a training aid. Logopedics Phoniatrics Vocology, 30(3–4), 136–146. https://doi.org/10.1080/14015430500294064
  121. Sataloff, R. T. (1981). Professional singers: The science and art of clinical care. American Journal of Otolaryngology, 2(3), 251–266. https://doi.org/10.1016/S0196-0709(81)80022-1
  122. Sataloff, R. T. (2017). Clinical assessment of voice (2nd ed.). Plural Publishing Inc.
  123. Sataloff, R. T., Hawkshaw, M. J., Johnson, J. L., Ruel, B., Wilhelm, A., & Lurie, D. (2012). Prevalence of abnormal laryngeal findings in healthy singing teachers. Journal of Voice, 26(5), 577–583. https://doi.org/10.1016/j.jvoice.2012.01.002
  124. Schultz, B. G., & Vogel, A. P. (2022). A tutorial review on clinical acoustic markers in speech science. Journal of Speech, Language, and Hearing Research, 65(9), 3239–3263. https://doi.org/10.1044/2022_JSLHR-21-00647
  125. Scotto Di Carlo, N. (1994). Internal voice sensitivities in opera singers. Folia Phoniatrica et Logopaedica, 46(2), 79–85. https://doi.org/10.1159/000266296
  126. Shembel, A. C., & Nanjundeswaran, C. (2022). Potential bio-physiological mechanisms underlying vocal demands and vocal fatigue. Journal of Voice, (Advance online publication). https://doi.org/10.1016/j.jvoice.2022.07.017
  127. Shipp, T., Doherty, E. T., & Haglund, S. (1990). Physiologic factors in vocal vibrato production. Journal of Voice, 4(4), 300–304. https://doi.org/10.1016/S0892-1997(05)80045-1
  128. Smitheran, J. R., & Hixon, T. J. (1981). A clinical method for estimating laryngeal airway resistance during vowel production. Journal of Speech and Hearing Disorders, 46(2), 138–146. https://doi.org/10.1044/jshd.4602.138
  129. Stevens, K. N. (2000). Acoustic phonetics. MIT Press.
  130. Sundberg, J. (1974). Articulatory interpretation of the “singing formant.” Journal of the Acoustical Society of America, 55(4), 838–844. https://doi.org/10.1121/1.1914609
  131. Sundberg, J. (1987). The science of the singing voice. Northern Illinois University Press.
  132. Sundberg, J. (1995). Acoustic and psychoacoustic aspects of vocal vibrato. In P. Dejonckere, M. Hirano, & J. Sundberg (Eds.), Vibrato (pp. 35–62). Singular Publishing Company.
  133. Sundberg, J. (2001). Level and center frequency of the singer’s formant. Journal of Voice, 15(2), 176–186. https://doi.org/10.1016/S0892-1997(01)00019-4
  134. Sundberg, J. (2022). Objective characterization of phonation type using amplitude of flow glottogram pulse and of voice source fundamental. Journal of Voice, 36(1), 4–14. https://doi.org/10.1016/j.jvoice.2020.03.018
  135. Sundberg, J., Andersson, M., & Hultqvist, C. (1999). Effects of subglottal pressure variation on professional baritone singers’ voice sources. The Journal of the Acoustical Society of America, 105(3), 1965–1971. https://doi.org/10.1121/1.426731
  136. Sundberg, J., Fahlstedt, E., & Morell, A. (2005). Effects on the glottal voice source of vocal loudness variation in untrained female and male voices. The Journal of the Acoustical Society of America, 117(2), 879–885. https://doi.org/10.1121/1.1841612
  137. Sundberg, J., Gramming, P., & LoVetri, J. (1993). Comparisons of pharynx, source, formant, and pressure characteristics in operatic and musical theatre singing. Journal of Voice, 7(4), 301–310. https://doi.org/10.1016/S0892-1997(05)80118-3
  138. Sundberg, J., Lã, F. M. B., & Gill, B. P. (2013). Formant tuning strategies in professional male opera singers. Journal of Voice, 27(3), 278–288. https://doi.org/10.1016/j.jvoice.2012.12.002
  139. Sundberg, J., & Nordenberg, M. (2006). Effects of vocal loudness variation on spectrum balance as reflected by the alpha measure of long-term-average spectra of speech. The Journal of the Acoustical Society of America, 120(1), 453–457. https://doi.org/10.1121/1.2208451
  140. Sundberg, J., Thalén, M., Alku, P., & Vilkman, E. (2004). Estimating perceived phonatory pressedness in singing from flow glottograms. Journal of Voice, 18(1), 56–62. https://doi.org/10.1016/j.jvoice.2003.05.006
  141. Švec, J. G., & Granqvist, S. (2010). Guidelines for selecting microphones for human voice production research. American Journal of Speech-Language Pathology, 19(4), 356–368. https://doi.org/10.1044/1058-0360(2010/09-0091)
  142. Švec, J. G., & Granqvist, S. (2018). Tutorial and guidelines on measurement of sound pressure level in voice and speech. Journal of Speech, Language, and Hearing Research, 61(3), 441–461. https://doi.org/10.1044/2017_JSLHR-S-17-0095
  143. Ternström, S. (2005). Does the acoustic waveform mirror the voice? Logopedics Phoniatrics Vocology, 30(3–4), 100–107. https://doi.org/10.1080/14015430500238400
  144. Ternström, S., Johansson, D., & Selamtzis, A. (2018). FonaDyn – A System for real-time analysis of the electroglottogram, over the voice range. SoftwareX, 7, 74–80. https://doi.org/10.1016/j.softx.2018.03.002
  145. Ternström, S., & Pabon, P. (2022). Voice maps as a tool for understanding and dealing with variability in the voice. Applied Sciences, 12(22), 11353. https://doi.org/10.3390/app122211353
  146. Thalen, M., & Sundberg, J. (2001). Describing different styles of singing: A comparison of a female singer’s voice source in “‘Classical’”, “‘Pop’”, “ ‘Jazz’” and “ ‘Blues.’” Logopedics Phoniatrics Vocology, 26(2), 82–93. https://doi.org/10.1080/140154301753207458
  147. Titze, I. R. (1992). Phonation threshold pressure: A missing link in glottal aerodynamics. The Journal of the Acoustical Society of America, 91(5), 2926–2935. https://doi.org/10.1121/1.402928
  148. Titze, I. R. (1995). Workshop on acoustic voice analysis: Summary statement (N. C. for V. and Speech, Ed.). National Center for Voice and Speech.
  149. Titze, I. R. (2000). Principles of voice production. National Center for Voice and Speech.
  150. Titze, I. R., Horii, Y., & Scherer, R. C. (1987). Some technical considerations in voice perturbation measurements. Journal of Speech and Hearing Research, 30, 252–260. https://doi.org/10.1044/jshr.3002.252
  151. Titze, I. R., & Liang, H. (1993). Comparison of fₒ extraction methods for high-precision voice perturbation measures. Journal of Speech, Language, and Hearing Research, 36(6), 1120–1133. https://doi.org/10.1044/jshr.3606.1120
  152. Titze, I. R., Schmidt, S. S., & Titze, M. R. (1995). Phonation threshold pressure in a physical model of the vocal fold mucosa. The Journal of the Acoustical Society of America, 97(5), 3080–3084. https://doi.org/10.1121/1.411870
  153. Titze, I. R., Story, B., Smith, M., & Long, R. (2002). A reflex resonance model of vocal vibrato. The Journal of the Acoustical Society of America, 111(5), 2272. https://doi.org/10.1121/1.1434945
  154. Titze, I. R., & Sundberg, J. (1992). Vocal intensity in speakers and singers. The Journal of the Acoustical Society of America, 91(5), 2936–2946. https://doi.org/10.1121/1.402929
  155. Toles, L. E., Seidman, A. Y., Hillman, R. E., & Mehta, D. D. (2022). Clinical utility of the ratio of sound pressure level to subglottal pressure in patients surgically treated for phonotraumatic vocal fold lesions. Journal of Speech, Language, and Hearing Research, 65(8), 2778–2788. https://doi.org/10.1044/2022_JSLHR-21-00658
  156. Van Houtte, E., Van Lierde, K., D’Haeseleer, E., & Claeys, S. (2010). The prevalence of laryngeal pathology in a treatment-seeking population with dysphonia. The Laryngoscope, 120(2), 306–312. https://doi.org/10.1002/lary.20696
  157. Weiss, R., Brown, W. S., & Moris, J. (2001). Singer’s formant in sopranos: Fact or fiction? Journal of Voice, 15(4), 457–468. https://doi.org/10.1016/S0892-1997(01)00046-7
  158. Welham, N. v. (2009). Clinical voice evaluation. In A. E. Aronson & D. M. Bless (Eds.), Clinical voice disorders (4th ed.). Theime Medical Publishers, Inc.
  159. Winholtz, W. S., & Titze, I. R. (1997). Conversion of a head-mounted microphone signal intocalibrated SPL units. Journal of Voice, 11(4), 417–421. https://doi.org/10.1016/S0892-1997(97)80037-9
  160. Wuyts, F. L., De Bodt, M., Molenberghs, G., Remacle, M., Heylen, L., Millet, B., Lierde, K. Van, Raes, J., & Heyning, P. H. Van de. (2000). The Dysphonia Severity Index. Journal of Speech, Language, and Hearing Research, 43(3), 796–809. https://doi.org/10.1044/jslhr.4303.796
  161. Yamauchi, A., Yokonishi, H., Imagawa, H., Sakakibara, K.-I., Nito, T., Tayama, N., & Yamasoba, T. (2016). Quantification of vocal fold vibration in various laryngeal disorders using high-speed digital imaging. Journal of Voice, 30(2), 205–214. https://doi.org/10.1016/j.jvoice.2015.04.016
Language: English
Submitted on: Sep 1, 2025
|
Accepted on: Nov 7, 2025
|
Published on: Feb 16, 2026
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2026 Calvin Peter Baker, published by Hochschule für angewandte Wissenschaft und Kunst, Hildesheim/Holzminden/Göttingen
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

AHEAD OF PRINT