Have a personal or library account? Click to login
Hybrid approaches in smart sensing for detecting buying intent: performance, reasoning, and real-world deployment Cover

Hybrid approaches in smart sensing for detecting buying intent: performance, reasoning, and real-world deployment

Open Access
|Jan 2026

References

  1. Reddy, R., Chopra, S., Singh, M.: Leveraging Transformer Models and Reinforcement Learning for Optimized AI-Enhanced Automated Sales Outreach. Innovative AI Research Journal, 12(1) (2023). Available at: https://www.iairj.com/index.php/v1/article/view/7
  2. Zou, D., Wei, W., Zhu, F., Xu, C., Zhang, T., Huo, C.: Knowledge Enhanced Multi-intent Transformer Network for Recommendation. arXiv preprint arXiv:2405.20565 (2024). Available at: https://arxiv.org/abs/2405.20565
  3. A. Goeckner, Y. Sui, N. Martinet, X. Li, and Q. Zhu, “Graph Neural Network based Multi-agent Reinforcement Learning for Resilient Distributed Coordination of Multi-Robot Systems,” arXiv preprint arXiv:2403.13093, 2024. Available: https://arxiv.org/abs/2403.13093
  4. Qin, Z., Lu, Y.: Knowledge graph-enhanced multi-agent reinforcement learning for adaptive scheduling in smart manufacturing. Journal of Intelligent Manufacturing (2024). Published 13 October 2024. Available at: DOI: 10.1007/s10845-024-02494-0
  5. Y. Chen, J. Liu, Z. Li, K. Zhang, and S. Zhang, “LLM-Agents: Large Language Model based Multi-Agent Reinforcement Learning,” arXiv preprint arXiv:2404.04898, 2024. Available: https://arxiv.org/abs/2404.04898
  6. Y. Ma, O. Burns, M. Wang, G. Li, N. Du, L. ElShafey, L. Wang, I. Shafran, and H. Soltau, “Knowledge Graph Reasoning with Self-supervised Reinforcement Learning,” arXiv preprint arXiv:2405.13640, 2024. Available: https://arxiv.org/abs/2405.13640
  7. McCrae, J., Manjunath, S.: Intent Classification by the Use of Automatically Generated Knowledge Graphs. Information, 14(5), Article 288 (2023). Available at: DOI: 10.3390/info14050288
  8. Z. Wang, B. Wang, H. Jing, H. Li, and H. Dou, “Walk Wisely on Graph: Knowledge Graph Reasoning with Dual Agents via Efficient Guidance-Exploration,” arXiv preprint arXiv:2408.01880, 2024. Available: https://arxiv.org/abs/2408.01880
  9. Zhou, F., Mi, J., Zhang, B., Shi, J., Zhang, R., Chen, X., Zhao, Y., Zhang, J.: Reliable knowledge graph fact prediction via reinforcement learning. Visual Computing for Industry, Biomedicine, and Art, 6 (Article 21), (2023). Published 20 November 2023. Available at: DOI: 10.1186/s42492-023-00150-7
  10. M. Saebi, S. Krieg, C. Zhang, M. Jiang, and N. Chawla, “Heterogeneous Relational Reasoning in Knowledge Graphs with Reinforcement Learning,” arXiv preprint arXiv:2003.06050, 2020. Available: https://arxiv.org/abs/2003.06050
  11. N. Quach, Q. Wang, Z. Gao, Q. Sun, B. Guan, and L. Floyd, “Reinforcement Learning Approach for Integrating Compressed Contexts into Knowledge Graphs,” arXiv preprint arXiv:2404.12587, 2024. Available: https://arxiv.org/abs/2404.12587
  12. Tao, S., Qiu, R., Cao, Y., Xue, G., Ping, Y.: Path-guided intelligent switching over knowledge graphs with deep reinforcement learning for recommendation. Complex and Intelligent Systems, 9, 7305–7319 (2023). Published 29 June 2023. Available at: DOI: 10.1007/s40747-023-01124-1
  13. Yu, C., Wang, W., Liu, X., Bai, J., Song, Y., Li, Z., Gao, Y., Cao, T., Yin, B.: FolkScope: Intention Knowledge Graph Construction for E-commerce Commonsense Discovery. arXiv preprint arXiv:2211.08316 (2023). Available at: https://arxiv.org/abs/2211.08316
  14. C. Hao, W. Feng, Y. Zhang, and H. Wang, “DynaSearcher: Dynamic Knowledge Graph Augmented Search Agent via Multi-Reward Reinforcement Learning,” arXiv preprint arXiv:2507.17365, July 2025. Available: https://arxiv.org/abs/2507.17365
  15. Zhang, X., Li, Y., Wang, J., Chen, H., Liu, Z.: Knowledge graph-enhanced multiagent reinforcement learning for adaptive scheduling in smart manufacturing. Journal of Intelligent Manufacturing, (2024). Available at: DOI: 10.1007/s10845-024-02494-0
  16. Wang, Y., Zhao, L., Chen, X., Sun, J., Xu, H.: Knowledge graph driven credit risk assessment for micro, small and medium-sized enterprises. International Journal of Production Research, (2023). Available at: DOI: 10.1080/00207543.2023.2257807
  17. Tang, R., Yu, Z., Chen, Q., Zhang, M.: KGLA: Knowledge Graph Enhanced Language Agents for Recommendation. arXiv preprint, arXiv:2410.19627 (2024). Available at: https://arxiv.org/pdf/2410.19627
  18. Li, H., Wang, Y., Zhou, J., Zhang, K.: GraphRAFT: Retrieval Augmented Fine-Tuning for Knowledge Graphs on Graph Databases. arXiv preprint, arXiv:2504.05478 (2025). Available at: https://arxiv.org/pdf/2504.05478v1
  19. Ma, Y., Xu, H., Chen, D., Zhang, J.: LinkQ: An LLM-Assisted Visual Interface for Knowledge Graph Question-Answering. arXiv preprint, arXiv:2406.06621 (2024). Available at: https://arxiv.org/pdf/2406.06621
  20. Shen, Z., Luo, P., Yang, L., Wang, Y.: Knowledge Graph Tuning: Real-time Large LLM Personalization based on Feedback. arXiv preprint, arXiv:2405.19686 (2024). Available at: https://arxiv.org/pdf/2405.19686
  21. Liu, H., Zhang, Y., Xu, M., Zhao, X.: Scene-Driven Multimodal Knowledge Graph Construction for Embodied AI. IEEE Transactions on Neural Networks and Learning Systems, (2024). Available at: https://iee-explore.ieee.org/document/10531671
  22. Zhou, L., Chen, Y., Wu, H., Li, F.: Enhancing Multi-Agent Systems via RL with LLM-based Planner & Graph-based Policy. arXiv preprint, arXiv:2503.10049 (2025). Available at: https://arxiv.org/pdf/2503.10049
  23. Rahman, M., Ahmed, S., Chowdhury, N.: Multi-agent learning and negotiation in e-market environment. 2022 IEEE International Conference on Artificial Intelligence and Education (AIE), pp. 1–6. Available at: DOI: 10.1109/AIE57029.2022.00083
  24. Liu, Q., Chen, T., Huang, W., Jiang, Z.: Learning Multi-Agent Intention-Aware Communication for Optimal Multi-Order Execution in Finance. Proceedings of the ACM on Knowledge Discovery and Data Mining, (2023). Available at: https://doi.org/10.1145/3580305.3599856
  25. Wu, D., Cai, Y., Chen, H.: Multi-agent collaboration for B2B workflow monitoring. Knowledge-Based Systems, 15(8), 493–502 (2002). Available at: https://doi.org/10.1016/S0950-7051(02)00033-3
  26. Gao, L., Xu, T., Li, H., Zhang, Q.: Multi-Agent Deep RL platform for real-time dynamic control of power systems. Neural Computing and Applications, (2024). Available at: DOI: 10.1007/s00521-024-10488-5
  27. Feng, J., Liu, R., Zhao, T., Li, P.: Synergizing Logical Reasoning, Knowledge Management and Collaboration in Multi-Agent LLM. arXiv preprint, arXiv:2507.02170 (2025). Available at: https://www.arxiv.org/pdf/2507.02170v1
  28. Popescu, E., Morar, A., Mihaiu, G.: Multi-Agent Recommendation and Aspect Level Sentiment Analysis in B2B CRM Systems. 2020 22nd International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), pp. 293–300. Available at: DOI: 10.1109/SYNASC51798.2020.00046
  29. Zhang, Y., Li, H., Chen, M.: Multi-Agent Deep RL for Cloud-Based Digital Twins in Power Grid Management. Journal of Cloud Computing, 13, Article 713 (2024). Available at: https://journalofcloudcomputing.springeropen.com/articles/10.1186/s13677-024-00713-w
  30. Wang, Q., Zhao, L., Xu, Y.: Inferring Latent Temporal Sparse Coordination Graph for Multi-Agent RL. arXiv preprint, arXiv:2403.19253 (2024). Available at: https://arxiv.org/pdf/2403.19253
  31. Gupta, R., Sharma, A., Singh, P.: Content Caching-Assisted Vehicular Edge Computing Using Multi-Agent Graph Attention RL. arXiv preprint, arXiv:2410.10071 (2024). Available at: https://arxiv.org/pdf/2410.10071
  32. Huang, X., Liu, T., Zhou, K.: AGENTSNET: Coordination & Collaborative Reasoning in Multi-Agent LLMs. arXiv preprint, arXiv:2507.08616 (2025). Available at: https://arxiv.org/pdf/2507.08616
  33. Hernandez-Leal, P., Kartal, B., Taylor, M.E.: Multi-Agent Reinforcement Learning: A Comprehensive Overview. arXiv preprint, arXiv:2312.10256 (2023). Available at: DOI: 10.48550/arXiv.2312.10256
  34. Jiang, J., Lu, Z.: Graph Convolutional Reinforcement Learning. arXiv preprint, arXiv:1810.09202 (2018). Available at: DOI: 10.48550/arXiv.1810.09202
  35. Zhou, D., Li, W., Chen, X.: Fit for Purpose: Modeling Wholesale Electricity Markets Realistically with Multi-Agent Deep Reinforcement Learning. Engineering Applications of Artificial Intelligence, Vol. 126, 100295 (2023). Available at: DOI: 10.1016/j.egyai.2023.100295
  36. Tesauro, G., Kephart, J.O.: Learning Competitive Pricing Strategies by MultiAgent Reinforcement Learning. Journal of Economic Dynamics & Control, 27(6), 893–921 (2003). Available at: DOI: 10.1016/S0165-1889(02)00122-7
  37. Iqbal, S., Sha, F.: Intent-Aware Multi-Agent Reinforcement Learning. IEEE International Conference on Robotics and Automation (ICRA), pp. 7444–7451 (2018). Available at: DOI: 10.1109/ICRA.2018.8463211
  38. Brown, A., Kumar, S.: Adaptive Marketing Campaigns Using Deep Reinforcement Learning: A Customer-Centric Approach. Frontiers in Business, Finance & Technology, Vol. 5 (2023). Available at: DOI: 10.71465/fbf254
  39. Chen, R., Wang, L., Xu, T.: Multi-Task Multi-Agent Reinforcement Learning via Skill Graphs. arXiv preprint, arXiv:2507.06690 (2025). Available at: https://arxiv.org/pdf/2507.06690v1
  40. Singh, V., Zhao, K., Lee, H.: Multi-Agent Reinforcement Learning for Dynamic Pricing in Supply Chains: Benchmarking Strategic Agent Behaviours under Realistically Simulated Market Condition. arXiv preprint, arXiv:2507.02698 (2025). Available at: DOI: 10.48550/arXiv.2507.02698
  41. Patel, N., Mehta, R., Zhang, Y.: Multi-Agent Reinforcement Learning for Job Shop Scheduling with GNN State Representation. Sustainability, 16(8), 3234 (2024). Available at: DOI: 10.3390/su16083234
  42. Yang, F., Zhao, H., Li, P.: A Survey on Multi-Agent Reinforcement Learning and its Applications. Journal of Artificial Intelligence, Vol. 6, 100020 (2024). Available at: DOI: 10.1016/j.jai.2024.02.003
  43. Cho, G., Shim, P.-s., Kim, J.: Explainable B2B Recommender System for Potential Customer Prediction Using KGAT. Electronics 12(17):3536 (2023). Available at: DOI: 10.3390/electronics12173536
  44. Du, Y., Li, S., Torralba, A., Tenenbaum, J.B., Mordatch, I.: Improving Factuality and Reasoning in Language Models through Multiagent Debate. arXiv preprint arXiv:2305.14325 (2023). Available at: https://arxiv.org/abs/2305.14325
  45. Zhou, Y., Zanette, A., Pan, J., Levine, S., Kumar, A.: ArCHer: Training Language Model Agents via Hierarchical Multi-Turn RL. arXiv preprint arXiv:2402.19446 (2024). Available at: https://arxiv.org/abs/2402.19446
  46. Patil, S., Vaze, V., Agarkar, P., Mahajan, H.: Social context-aware and fuzzy preference temporal graph for personalized B2B marketing campaigns recommendations. Soft Computing (2023). Available at: DOI: 10.1007/s00500-023-08914-2
  47. Henna, S., Kalliadan, S.K., Amjath, M.: Optimizing B2B customer relationship management and sales forecasting with spectral graph convolutional networks: A quantitative approach. Quantitative Finance and Economics 9(2):449–478 (2025). Available at: DOI: 10.3934/QFE.2025015
  48. Sankaradas, M., Rajendran, R.K., Chakradhar, S.T.: StreamingRAG: Realtime Contextual Retrieval and Generation Framework. arXiv preprint arXiv:2501.14101 (2025). Available at: https://arxiv.org/abs/2501.14101
  49. Wang, X., Huang, T., Wang, D., Yuan, Y., Liu, Z., He, X., Chua, T.-S.: Learning Intents behind Interactions with Knowledge Graph for Recommendation (KGIN). arXiv preprint arXiv:2102.07057 (2021). Available at: https://arxiv.org/abs/2102.07057
  50. Ozsoy, M.G., Messallem, L., Besga, J., Minneci, G.: Text2Cypher: Bridging Natural Language and Graph Databases. arXiv preprint arXiv:2412.10064 (2024). Available at: https://arxiv.org/abs/2412.10064
  51. Yip, H.Y., Liu, Y., Sheth, A.: Using Contact, Content, and Context in Knowledge Infused Learning: A Case Study of Non-Sequential Sales Processes in Sales Engagement Graphs. In: Proceedings of the Knowledge-Infused Learning (K-IL) Workshop at the Knowledge Graph Conference 2021, CEUR-WS.org, pp. 1–8 (2021). Available at: https://aiisc.ai/KiL2021/papers/K-iL2021 paper 2.pdf
  52. Y. M. Brovman, Building a Deep Learning Based Retrieval System for Personalized Recommendations, eBay Innovation (2022). [Online]. Available: https://innovation.ebayinc.com/stories/building-a-deep-learning-based-retrieval-system-for-personalized-recommendations/.
  53. Changlong Yu and Zheng Li, Building commonsense knowledge graphs to aid product recommendation, Amazon Science Blog, May 10, 2024. Available: https://www.amazon.science/blog/building-commonsense-knowledge-graphs-to-aid-product-recommendation
  54. Tianmin Shu and Yuandong Tian, M3RL: Mind-aware Multi-agent Management Reinforcement Learning, Published as a conference paper at ICLR 2019. https://scontent.fpnq7-5.fna.fbcdn.net/v/t39.8562-6/24084555210107969030479723760881129737168841n.pdf?nccat=107&ccb=1-7&ncsid=e280be&ncohc=WjQVdPoDXEcQ7kNvwG-ZYwL3&ncoc=AdkyLfkAJfXKdLn1g5egqPE5CXMs-bLSmqJMr9hooE0JRuyaIo3w1Q5mdR9dKityVpOQ&nczt=14&ncht=scontent.fpnq7-5.fna&ncgid=c-QCSRfsxg7N6bwNTIhnxA&oh=00AfVl2PPmEjxSVTv-05vHrkR1PtxM-i3t7jqL6oAbgwPOGw&oe=68B06DD9
  55. Yujing Hu, Qing Da, Anxiang Zeng, Yang Yu, and Yinghui Xu, Reinforcement Learning to Rank in E-Commerce Search Engine: Formalization, Analysis, and Application, Proceedings of KDD ’18, 2018. DOI: 10.1145/3219819.3219846. https://arxiv.org/pdf/1803.00710
  56. Jannuzzi, M., Perezhoh in, Y., Peres, F., Castelli, M., & Popovič, A. (2024). Zero-Shot Prompting Strategies for Table Question Answering with a Low-Resource Language. Emerging Science Journal, 8(5), 2003–2022. DOI: 10.28991/ESJ-2024-08-05-020
  57. Editya, A. S., Ahmad, T., & Studiawan, H. (2024). Visual Instruction Tuning for Drone Accident Forensics. HighTech and Innovation Journal, 5(4), 870–884. DOI: 10.28991/HIJ-2024-05-04-01
Language: English
Submitted on: Sep 15, 2025
|
Published on: Jan 29, 2026
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2026 Kuldeep Vayadande, Smita Sanjay Ambarkar, Viomesh Kumar Singh, Rahul Prakash Mirajkar, Sonali P. Bhoite, Amolkumar N. Jadhav, Rakhi Bharadwaj, Sanket Sunil Pawar, Yogesh Bodhe, Ganesh B. Dapke, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.