Have a personal or library account? Click to login

Design of BQN-based decision support system and HSCNN-GPOR futuristic prediction for precision agriculture using IoT

Open Access
|Oct 2025

References

  1. Manida. M., & Nedumaran. G., (2020). Agriculture in India: Information about Indian Agriculture & Its Importance. Aegaeum Journal, 8(3), 729–736.
  2. Nishant, Potnuru Sai, et al., (2020). Crop yield prediction based on Indian agriculture using machine learning. 2020 International Conference for Emerging Technology (INCET), IEEE, DOI: 10.1109/INCET49848.2020.9154036.
  3. Akhter, Ravesa, & Shabir Ahmad Sofi, (2021). Precision agriculture using IoT data analytics and machine learning. Journal of King Saud University-Computer and Information Sciences, DOI: 10.1016/j.jksuci.2021.05.013.
  4. Mir, Rayees Afzal, & Mohsina Ishrat, (2020). WIDE-AREA AGRICULTURAL ADVANCED MONITORING AND PREDICTION SYSTEM USING IOT AND MACHINE LEARNING.” International Journal of Management (IJM), 11(8), http://dx.doi.org/10.22581/muet1982.2401.2806.
  5. Aryal, Jeetendra Prakash, et al., (2020). Climate change and agriculture in South Asia: Adaptation options in smallholder production systems. Environment, Development and Sustainability, 22(6), 5045–5075, https://link.springer.com/article/10.1007/s10668-019-00414-4.
  6. Serrano, João, et al., (2020). Climate changes challenges to the management of Mediterranean montado ecosystem: Perspectives for use of precision agriculture technologies. Agronomy, 10(2), 218, DOI: 10.3390/agronomy10020218.
  7. Zhai, Zhaoyu, et al., (2020). Decision support systems for agriculture 4.0: Survey and challenges. Computers and Electronics in Agriculture, 170, 05256, DOI: 10.1016/j.compag.2020.105256.
  8. Gallardo, Marisa, Antonio Elia, Rodney B, & Thompson, (2020). Decision support systems and models for aiding irrigation and nutrient management of vegetable crops. Agricultural Water Management, 240, 106209, DOI: 10.1016/j.agwat.2020.106209.
  9. Ara, Iffat, et al., (2021). Application, adoption and opportunities for improving decision support systems in irrigated agriculture: A review. Agricultural Water Management, 257, 07161, DOI: 10.1016/j.agwat.2021.107161.
  10. Torres-Sanchez, Roque, et al., (2020). A decision support system for irrigation management: Analysis and implementation of different learning techniques. Water, 12(2), 548, DOI: 10.3390/w12020548.
  11. Aghaloo, Kamaleddin, & Yie-Ru Chiu, (2020). Identifying optimal sites for a rainwater-harvesting agricultural scheme in iran using the best-worst method and fuzzy logic in a GIS-based decision support system. Water, 12(7), 913, DOI: 10.3390/w12071913.
  12. Sujatha R, et al., (2021). Performance of deep learning vs machine learning in plant leaf disease detection. Microprocessors and Microsystems, 80, 03615, DOI: 10.1016/j.micpro.2020.103615.
  13. Jadhav, Sachin. B., Vishwanath, R., Udupi, Sanjay, B., & Patil, (2021). Identification of plant diseases using convolutional neural networks. International Journal of Information Technology, 13(6), 2461–2470, DOI: 10.1109/ACCESS.2022.3141371.
  14. Radovanović, Draško, & Slobodan Đukanovic, (2020). Image-based plant disease detection: a comparison of deep learning and classical machine learning algorithms. 2020 24th International conference on information technology (IT), IEEE, DOI: 10.1109/IT48810.2020.9070664.
  15. Abdu, Aliyu Muhammad, Musa Mohd Mokji, & Usman Ullah Sheikh, (2020). Automatic vegetable disease identification approach using individual lesion features. Computers and Electronics in Agriculture, 176, 05660, DOI: 10.1016/j.compag.2020.105660.
  16. Campoverde, Luis Miguel Samaniego, Mauro Tropea, & Floriano De Rango, (2021). An IoT based smart irrigation management system using reinforcement learning modeled through a Markov decision process. 2021 IEEE/ACM 25th International Symposium on Distributed Simulation and Real Time Applications (DS-RT), IEEE, DOI: 10.1109/DS-RT52167.2021.9576130.
  17. Lizana, Fernando, et al., (2020). Building a Text Messaging-Based System to Support Low-Cost Automation in Household Agriculture. 2020 Congreso Estudiantil de Electrónica y Electricidad (INGELECTRA), IEEE, DOI: 10.1109/INGELECTRA50225.2020.246967.
  18. Franceschelli, Leonardo, et al., (2020). A non-invasive soil moisture sensing system electronic architecture: A real environment assessment. Sensors, 20(21), 6147, DOI: 10.3390/s20216147.
  19. Nie, Xuan, et al., (2019). Strawberry verticillium wilt detection network based on multi-task learning and attention. IEEE Access, 7, 170003–170011, DOI: 10.1109/ACCESS.2019.2954845.
  20. Zhang, Li, et al., (2019). Multi-task cascaded convolutional networks based intelligent fruit detection for designing automated robot. IEEE Access, 7, 56028–56038, DOI: 10.1109/ACCESS.2019.2899940.
  21. Li, W., Clark, B., Taylor, J.A., Kendall, H., Jones, G., Li, Z., Jin, S., Zhao, C., Yang, G., Shuai, C., & Cheng, X., (2020). A hybrid modelling approach to understanding adoption of precision agriculture technologies in Chinese cropping systems. Computers and Electronics in Agriculture, 172, 105305, DOI: 10.1016/j.compag.2020.105305.
  22. Torky, M., & Hassanein, A.E., (2020). Integrating blockchain and the internet of things in precision agriculture: Analysis, opportunities, and challenges. Computers and Electronics in Agriculture, 178, 105476, DOI: 10.1016/j.compag.2020.105476.
  23. Sahu, P., Chug, A., Singh, A.P., Singh, D., & Singh, R.P., (2021). Challenges and Issues in Plant Disease Detection Using Deep Learning. Handbook of Research on Machine Learning Techniques for Pattern Recognition and Information Security, 56–74, 10.4018/978-1-7998-3299-7.ch004.
  24. Akhter, R., & Sofi, S.A., (2022). Precision agriculture using IoT data analytics and machine learning. Journal of King Saud University-Computer and Information Sciences, 34(8), 5602–5618, DOI: 10.1016/j.jksuci.2021.05.013.
  25. Kouadri, S., Pande, C.B., Panneerselvam, B., Moharir, K.N., & Elbeltagi, A., (2022). Prediction of irrigation groundwater quality parameters using ANN, LSTM, and MLR models. Environmental Science and Pollution Research, 29(14), 21067–21091, DOI: 10.1007/s11356-021-17084-3.
  26. Panigrahi, K.P., Das, H., Sahoo, A.K., & Moharana, S.C., (2020). Maize leaf disease detection and classification using machine learning algorithms. In Progress in Computing, Analytics and Networking, 659–669. Springer, Singapore, http://dx.doi.org/10.1007/978-981-15-2414-1_66.
Language: English
Submitted on: Oct 9, 2024
Published on: Oct 4, 2025
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Sneha M. Khupse, Prabhakar L. Ramteke, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.