Have a personal or library account? Click to login

Enhanced weed and crop species classification using optimized machine learning and ensemble techniques

Open Access
|Oct 2025

References

  1. Zhuang, J., Li, X., Bagavathiannan, M., Jin, X., Yang, J., Meng, W., Li, T., Li, L., Wang, Y., Chen, Y., & Yu, J. (2022). Evaluation of different deep convolutional neural networks for detection of broadleaf weed seedlings in wheat. Pest Management Science, 78(2), 521–529. DOI: 10.1002/ps.6676
  2. Picon, A., San-Emeterio, M. G., Bereciartua-Perez, A., Klukas, C., Eggers, T., & Navarra-Mestre, R. (2022). Deep learning-based segmentation of multiple species of weeds and corn crop using synthetic and real image datasets. Computers and Electronics in Agriculture, 194, 106719. DOI: 10.1016/j.compag.2022.106719
  3. Gai, J., Tang, L., & Steward, B. L. (2020). Automated crop plant detection based on the fusion of color and depth images for robotic weed control. Journal of Field Robotics, 37(1), 35–52. DOI: 10.1002/rob.21916
  4. Al-Badri, A. H., Ismail, N., & Al-Dulaimi, K. (2022). Classification of weed using machine learning techniques: A review—challenges, current and future potential techniques. Journal of Plant Diseases and Protection, 129, 745–768. DOI: 10.1007/s41348-022-00612-9
  5. Zhao, X., Yuan, Y., Song, M., Ding, Y., Lin, F., Liang, D., & Zhang, D. (2019). Use of unmanned aerial vehicle imagery and deep learning unet to extract rice lodging. Sensors, 19(18), 3859. DOI: 10.3390/s19183859
  6. Osorio, K., Puerto, A., Pedraza, C., Jamaica, D., & Rodríguez, L. (2020). A deep learning approach for weed detection in lettuce crops using multispectral images. AgriEngineering, 2(3), 471–488. DOI: 10.3390/agriengineering2030032
  7. Rajendran, S., & Thirunavukkarasu, K. S. (2025). Advanced classification techniques for weed and crop species recognition using machine learning algorithms. International Journal of Advances in Applied Sciences, 14(2).
  8. Moldvai, L., Mesterházi, P. Á., Teschner, G., & Nyéki, A. (2024). Weed detection and classification with computer vision using a limited image dataset. Applied Sciences, 14(11), 4839. DOI: 10.3390/app14114839
  9. Zhu, H., Zhang, Y., Mu, D., Bai, L., Wu, X., Zhuang, H., & Li, H. (2024). Research on improved YOLOx weed detection based on lightweight attention module. Crop Protection, 177, 106563. DOI: 10.1016/j.cropro.2024.106563
  10. Zhang, C., Liu, T., Xiao, J., Lam, K.-M., & Wang, Q. (2023). Boosting object detectors via strong-classification weak-localization pretraining in remote sensing imagery. IEEE Transactions on Instrumentation and Measurement, 72, 1–20. DOI: 10.1109/TIM.2023.3279655
  11. Hasan, A. S. M. M., Diepeveen, D., Laga, H., Jones, M. G. K., & Sohel, F. (2024). Object-level benchmark for deep learning-based detection and classification of weed species. Crop Protection, 177, 106561. DOI: 10.1016/j.cropro.2024.106561
  12. You, J., Liu, W., & Lee, J. (2020). A DNN-based semantic segmentation for detecting weed and crop. Computers and Electronics in Agriculture, 178, 105750. DOI: 10.1016/j.compag.2020.105750
  13. Sakeef, N., Scandola, S., Kennedy, C., Lummer, C., Chang, J., Uhrig, R. G., & Lin, G. (2023). Machine learning classification of plant genotypes grown under different light conditions through the integration of multi-scale time-series data. Computational and Structural Biotechnology Journal, 21, 3183–3195. DOI: 10.1016/j.csbj.2023.05.005
  14. Razfar, N., True, J., Bassiouny, R., Venkatesh, V., & Kashef, R. (2022). Weed detection in soybean crops using custom lightweight deep learning models. Journal of Agriculture and Food Research, 8, 100308. DOI: 10.1016/j.jafr.2022.100308
  15. H. S. Panati, G. P, D. A. A and M. N. T, “Weeds and Crop Image Classification using Deep Learning Technique,” 2023 9th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 2023, pp. 117–122, doi: 10.1109/ICACCS57279.2023.10112958
  16. Sapkota, Bishwa B., Chengsong Hu, and Muthukumar V. Bagavathiannan. “Evaluating cross-applicability of weed detection models across different crops in similar production environments.” Frontiers in Plant Science 13 (2022)
  17. Diana Andrushia, A., Mary Neebha, T., Trephena Patricia, A., Umadevi, S., Anand, N. and Varshney, A., 2022. Image-based disease classification in grape leaves using convolutional capsule network. Soft Computing, pp. 1–14
  18. Ahmad, Aanis, Dharmendra Saraswat, Varun Aggarwal, Aaron Etienne, and Benjamin Hancock. “Performance of deep learning models for classifying and detecting common weeds in corn and soybean production systems.” Computers and Electronics in Agriculture 184 (2021): 106081.
  19. Liu, Yang, Shuang Liu, Jingwen Xu, Xiangna Kong, Liao Xie, Keyu Chen, Yunyuan Liao, Bowei Fan, and Kaili Wang. “Forest pest identification based on a new dataset and convolutional neural network model with enhancement strategy.” Computers and Electronics in Agriculture 192 (2022): 106625.
  20. Wang, A., Xu, Y., Wei, X., & Cui, B. (2020). Semantic segmentation of crop and weed using an encoder-decoder network and image enhancement method under uncontrolled outdoor illumination. IEEE Access, 8, 81724–81734.
  21. Hu, K., Wang, Z., Coleman, G. et al. Deep learning techniques for in-crop weed recognition in large-scale grain production systems: a review. Precision Agric 25, 1–29 (2024). DOI: 10.1007/s11119-023-10073-1
  22. Veeranampalayam Sivakumar, A. N. V., Li, J., Scott, S., Psota, E., Jhala, J. A., Luck, J. D., & Shi, Y. (2020). Comparison of object detection and patch-based classification deep learning models on mid-to late-season weed detection in uav imagery. Remote Sensing, 12(13), 2136.
Language: English
Submitted on: Feb 1, 2025
Published on: Oct 4, 2025
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 R. Sathya, K.S. Thirunavukkarasu, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.