Have a personal or library account? Click to login

An improved similarity matching model for the content-based image retrieval model

Open Access
|Jul 2025

References

  1. D. Srivastava, S. S. Singh, B. Rajitha, M. Verma, M. Kaur and H. -N. Lee, “Content-Based Image Retrieval: A Survey on Local and Global Features Selection, Extraction, Representation, and Evaluation Parameters,” in IEEE Access, vol. 11, pp. 95410–95431, 2023, doi: 10.1109/ACCESS.2023.3308911.
  2. G. Sumbul, J. Xiang and B. Demir, “Towards Simultaneous Image Compression and Indexing for Scalable Content-Based Retrieval in Remote Sensing,” in IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–12, 2022, Art no. 5630912, doi: 10.1109/TGRS.2022.3204914.
  3. Cengiz Pehlevan, Anirvan M Sengupta, and Dmitri B Chklovskii. Why do similarity matching objectives lead to hebbian/anti-hebbian networks? Neural computation, 30(1):84–124, 2018.
  4. Liu, G.-H.; Yang, J.-Y. Content-based image retrieval using color difference histogram. Pattern Recognit. 2013, 46, 188–198.
  5. Tian, D. Support Vector Machine for Content-based Image Retrieval: A Comprehensive Overview. J. Inf. Hiding Multim. Signal Process. 2018, 9, 1464–1478.
  6. Mehmood, Z.; Mahmood, T.; Javid, M.A. Content-based image retrieval and semantic automatic image annotation based on the weighted average of triangular histograms using support vector machine. Appl. Intell. 2018, 48, 166–181.
  7. Bay, Herbert, Tinne Tuytelaars, and Luc Van Gool. “SURF: Speeded Up Robust Features.” Computer Vision – ECCV 2006 Lecture Notes in Computer Science (2006): 404–17. Web.
  8. Lindeberg, T.: Feature detection with automatic scale selection. IJCV 30(2) (1998) 79–116.
  9. Mikolajczyk, K., Schmid, C.: Indexing based on scale invariant interest points. In: ICCV. Volume 1. (2001) 525–531.
  10. H. Tamura, S. Mori, and Y. Yamawaki, “Textural Features Corresponding to Visual Perception”, IEEE Transactions on Systems, Man, and Cybernetics, SMC-8, (1978), pp. 460–473.
  11. P. Manipoonchelvi and K. Muneeswaran, Multi region-based image retrieval system, Sadhana Indian Acad. Sci. 39 (2014), 333–344.
  12. Radenović F., Iscen A., Tolias G., Avrithis Y., Chum O. Revisiting Oxford, and Paris: Large-Scale Image Retrieval Benchmarking, CVPR, 2018.
  13. Ashraf, R.; Bashir, K.; Irtaza, A.; Mahmood, M.T. Content Based Image Retrieval Using Embedded Neural Networks with Bandletized Regions. Entropy 2015, 17, 3552–3580.
  14. Lin Feng, Jun Wu, Shenglan Liu, Hongwei Zhang, Global Correlation Descriptor: A novel image representation for image retrieval, Journal of Visual Communication, and Image Representation, Volume 33, 2015, Pages 104–114.
  15. Seetharaman, K. and Selvaraj, S., 2016. Statistical tests of hypothesis based color image retrieval. Journal of Data Analysis and Information Processing, 4(2), pp.90–99.
  16. Abhishek Jain, Aman Jain, Nihal Chauhan, Vikrant Singh, Narina Thakur, “Information Retrieval using Cosine and Jaccard Similarity Measures in Vector Space Model”, International Journal of Computer Applications, Volume 164, No 6, PP.28–30, 2017.
  17. Komal Maher, Madhuri S. Joshi, “Effectiveness of Different Similarity Measures for Text Classification and Clustering”, International Journal of Computer Science and Information Technologies, Vol. 7, No.4, pp. 1715–1720, 2016.
  18. Obeid, D., Ramambason, H., and Pehlevan, C. (2019). Structured and deep similarity matching via structured and deep hebbian networks. In Advances in Neural Information Processing Systems, pages 15377–15386.
  19. D.M Raj, R. Mohanasundaram (2020), “A New Improved Filter-based Feature Selection Model for High Dimensional Data” Journal of Supercomputing, Springer, volume No. 76, Issue No. 3, pp 5745–5762.
  20. O. Siméoni, Y. Avrithis and O. Chum, “Local Features and Visual Words Emerge in Activations,” 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 2019, pp. 11643–11652, doi: 10.1109/CVPR.2019.01192.
  21. Moheb Ramzy Girgis, Abdelmgeid Amin Aly & Fatima Mohy Eldin Azzam “The Effect of Similarity Measures on Genetic Algorithm-Based Information Retrieval”, International Journal of Computer Science Engineering and Information Technology Research. Vol. 4, Issue 5, Oct 2014, pp. 91–100.
  22. A. El-Nouby, N. Neverova, I. Laptev, and H. Jegou, “Training vision transformers for image retrieval,” arXiv preprint arXiv:2102.05644, 2021, doi. org/10.48550/arXiv.2102.05644.
  23. Y. Zhang, Q. Qian, H. Wang, C. Liu, W. Chen and F. Wang, “Graph Convolution Based Efficient Re-Ranking for Visual Retrieval,” in IEEE Transactions on Multimedia, doi: 10.1109/TMM.2023.3276167.
  24. X. Zhu, H. Wang, P. Liu, Z. Yang, and J. Qian, “Graph-based reasoning attention pooling with curriculum design for content-based image retrieval,” Image and Vision Computing, vol. 115, p. 104289, 2021, doi.org/10.1016/j.imavis.2021.104289.
  25. Raj, R. Mohanasundaram (2020), “An Efficient Filter-Based Feature Selection Model to Identify Significant Features from High-Dimensional Microarray Data” Arabian Journal for Science and Engineering”, Springer, volume-45, pp. 2619–2630.
  26. T. Sutojo, P. S. Tirajani, D. R. Ignatius Moses Setiadi, C. A. Sari and E. H. Rachmawanto, “CBR for classification of cow types using GLCM and color features extraction,” 2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE), Yogyakarta, Indonesia, 2017, pp. 182–187, doi: 10.1109/ICITISEE.2017.8285491.
  27. Chauhan, S., Prasad, R., Saurabh, P., Mewada, P. (2018). Dominant and LBP-Based Content Image Retrieval Using Combination of Color, Shape and Texture Features. In: Pattnaik, P., Rautaray, S., Das, H., Nayak, J. (eds) Progress in Computing, Analytics and Networking. Advances in Intelligent Systems and Computing, vol 710. Springer, Singapore. DOI: 10.1007/978-981-10-7871-2_23.
  28. Sengupta, A., Pehlevan, C., Tepper, M., Genkin, A., and Chklovskii, D. (2018). Manifold-tiling localized receptive _elds are optimal in similarity-preserving neural networks. In Advances in Neural Information Processing Systems, pp.7080–7090.
  29. Manimegalai A, Dr. Josephine Prem Kumar, “Automating Image Retrieval using UIpath (RPA) by Extricating Color Feature with String comparison in CBIR”, International Journal of New Innovations in Engineering and Technology (IJNIET), Volume14 Issue 2-July2020, pp.14–20.
  30. Manimegalai A, Sonika, Sunil KK, Sunil BA, Vishwas V, “Enhancing Signature Forgery Detection System using CNN-SVM”, International Journal of Innovative Research in information Security, Volume 10, Issue 04, May 2024, DOI: 10.26562/ijiris.2024.v1004.33.
  31. H. Wu, M. Wang, W. Zhou, H. Li, and Q. Tian, “Contextual similarity distillation for asymmetric image retrieval,” IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9489–9498, 2022, doi: 10.1109/cvpr52688.2022.00927.
  32. Y. Song, R. Zhu, M. Yang, and D. He, “Dalg: Deep attentive local and global modeling for image retrieval,” arXiv preprint arXiv:2207.00287, 2022.
  33. H. Wu, M. Wang, W. Zhou, H. Li, and Q. Tian, “Contextual similarity distillation for asymmetric image retrieval,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 9489–9498.
  34. H. Gu, J. Li, G. Fu, C. Wong, X. Chen, and J. Zhu, “Autoloss GMS: Searching generalized margin-based softmax loss function for person re-identification,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 4744–4753.
  35. G. Wu, X. Zhu, and S. Gong, “Learning hybrid ranking representation for person re-identification,” Pattern Recognition, vol. 121, p. 108239, 2022.
  36. T. Si, F. He, H. Wu, and Y. Duan, “Spatial-driven features based on image dependencies for person re-identification,” Pattern Recognition, vol. 124, p. 108462, 2022.
  37. K. Zhou, Y. Yang, A. Cavallaro, and T. Xiang, “Learning generalizable omni-scale representations for person re-identification,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 9, pp. 5056–5069, 2022.
  38. Panel Giriraj Gautam, Anita Khanna, “Content Based Image Retrieval System Using CNN based Deep Learning Models”, Elsevier, Vol 235, Pages 3131–3141, 2024, DOI: 10.1016/j.procs.2024.04.296
  39. Chi Zhang, Jie Liu, “Content Based Deep Learning Image Retrieval: A Survey”, ICCIP 2023: 2023 the 9th International Conference on Communication and Information Processing (ICCIP), DOI: 10.1145/3638884.3638908
  40. Yiwei Jia, Yiwei Jia, Shiyong Huang, Xueming Li, “HFFR-SR: Hierarchical Fusion Feature Representations for Super Resolution of Old Images”, ICCIP 2023: 2023 the 9th International Conference on Communication and Information Processing (ICCIP), pages 1–5, DOI: 10.1145/3638884.3638885.
Language: English
Submitted on: Aug 30, 2024
Published on: Jul 19, 2025
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2025 Manimegalai Asokaraj, Josephine Prem Kumar, Nanda Ashwin, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.