Have a personal or library account? Click to login
Quantifying neurophysiological mechanism through heart rate variability: the case of cognitive stress Cover

Quantifying neurophysiological mechanism through heart rate variability: the case of cognitive stress

Open Access
|Jun 2025

References

  1. Acharya, U. R., Joseph, K. P., Kannathal, N., Lim, C. M., & Suri, J. S. (2006). Heart rate variability: A review. Medical and Biological Engineering and Computing, 44(12), 1031–1051.
  2. Aditya Pramanta, S. P. L., Prihatmanto, A. S., & Park, M. G. (2016). A study on the stress identification using observed heart beat data. Proc. 6th International Conference on System Engineering and Technology (ICSET), 149–152.
  3. Adler, N., Stewart, J., Cohen, S., Cullen, M., Roux, A. D., Dow, W., Evans, J., Kawachi, I., Marmot, M., Matthews, K., McEwen, B., Schwartz, J., Seeman, T., & Williams, D. (2007). Reaching for a healthier life: Facts on socioeconomic status and health in the US (tech. rep.) [Online]. Available: https://macses.ucsf.edu/downloads/Reaching_for_a_Healthier_Life.pdf]. The John D. and Catherine T. MacArthur Foundation Research Network on Socioeconomic Status and Health. San Francisco, CA, USA.
  4. Afonso, V. X. (1993). ECG QRS detection. In W. J. Tompkins (Ed.), Biomedical digital signal processing: C-language examples and laboratory experiments for the IBM pc (pp. 236–264). Prentice-Hall.
  5. Ahlstrom, M. L., & J., T. W. (1985). Digital filters for real-time ECG signal processing using microprocessors. IEEE Transactions on Biomedical Engineering, BME-32(9), 708–713.
  6. Akay, M. (2012). Biomedical signal processing. Academic Press.
  7. Akselrod, S., Gordon, D., Ubel, F. A., Shannon, D. C., Berger, A. C., & Cohen, R. J. (1981). Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science, 213(4504), 220–222.
  8. Al-Hazimi, A., Al-Ama, N., Syiamic, A., Qosti, R., & Abdel-Galil, K. (2002). Time-domain analysis of heart rate variability in diabetic patients with and without autonomic neuropathy. Annals of Saudi Medicine, 22(5-6), 400–403.
  9. Alhussainy, A. M. H. (2020). QRS complex detection and R–R interval computation based on discrete wavelet transform. International journal on smart sensing and intelligent systems, 13(1), 1–11.
  10. Arzeno, N. M., Poon, C. S., & Deng, Z. D. (2006). Quantitative analysis of QRS detection algorithms based on first derivative of the ECG. Proc. 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), 1788–1791.
  11. Badre, D. (2021). Tips from neuroscience to keep you focused on hard tasks. Nature.
  12. Balda, R. A., Diller, G., Deardorff, E., Doue, J., & Hsieh, P. (1977). The HPECG analysis program. In J. H. van Bemmel & J. L. Willems (Eds.), Proceedings of the ifip working conference trends in computer processed electrocardiograms (pp. 197–204). North-Holland Publishing Company.
  13. Bando, S., Nozawa, A., & Matsuya, Y. (2015). Multidimensional directed coherence analysis of keystroke dynamics and physiological responses. Proc. IEEE International Conference on Noise and Fluctuations (ICNF), 1–4.
  14. Bansal, D., Khan, M., & Salhan, A. K. (2007). An ECG monitoring system having simple interface with computer capable of real time data transfer. Proc. International Conference on Engineering the future of Biology & Medicine, 1–7.
  15. Barreto, A., Zhai, J., & Adjouadi, M. (2007). Non-intrusive physiological monitoring for automated stress detection in human-computer interaction. In M. Lew, N. Sebe, T. S. Huang & E. M. Bakker (Eds.), Proc. International Workshop on Human-Computer Interaction (HCI) (pp. 29–38). Springer.
  16. Behzadi, Y., Restom, K., Liau, J., & Liu, T. T. (2007). A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. Neuroimage, 37(1), 90–101.
  17. Betti, S., Lova, R. M., Rovini, E., Acerbi, G., Santarelli, L., Cabiati, M., Ry, S. D., & Cavallo, F. (2018). Evaluation of an integrated system of wearable physiological sensors for stress monitoring in working environments by using biological markers. IEEE Transactions on Biomedical Engineering, 65(8), 1748–1758.
  18. Beyramienanlou, H., & Lotfivand, N. (2017). Shannon’s energy based algorithm in ECG signal processing. Computational and Mathematical Methods in Medicine, 2017, 1–16.
  19. Bhattacharyya, P. K., & Lowe, M. J. (2004). Cardiac-induced physiologic noise in tissue is a direct observation of cardiac-induced fluctuations. Magnetic Resonance Imaging, 22(1), 9–13.
  20. Billman, G. E., Huikuri, H. V., Sacha, J., & Trimmel, K. (2015). An introduction to heart rate variability: Methodological considerations and clinical applications. Frontiers in Physiology, 6(55), 1–3.
  21. Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.
  22. Bland, J. M., & Altman, D. G. (1996). Transformations, means, and confidence intervals. BMJ: British Medical Journal, 312(7038), 1079.
  23. Blaug, R., Kenyon, A., & Lekhi, R. (2007). Stress at work: A report prepared for the work foundation’s principal partners (tech. rep. 2(2)) [[Online]. Available: https://westminsterresearch.westminster.ac.uk/item/91wvv/stress-at-work-a-report-preparedfor-thework-foundation-s-principal-partners]. The Work Foundation. London, UK.
  24. Bousefsaf, F., Maaoui, C., & Pruski, A. (2013). Remote assessment of the heart rate variability to detect mental stress. Proc. 7th International Conference on Pervasive Computing Technologies for Healthcare, 348–351.
  25. Bracha, H. S. (2004). Freeze, flight, fight, fright, faint: Adaptationist perspectives on the acute stress response spectrum. CNS Spectrums, 9(9), 679–685.
  26. Brouwer, A. M., Dijksterhuis, C., & van Erp, J. B. (2015). Physiological correlates of mental effort a manipulated through lane width during simulated driving. Proc. IEEE International Conference on Affective Computing and Intelligent Interaction (ACII), 42–48.
  27. Brüser, C., Antink, C. H., Wartzek, T., Walter, M., & Leonhardt, S. (2015). Ambient and unobtrusive cardio respiratory monitoring techniques. IEEE Reviews in Biomedical Engineering, 8, 30–43.
  28. Burg, J. M., Wolf, O. T., & Michalak, J. (2012). Mindfulness as self-regulated attention. Swiss Journal of Psychology, 71(3), 135–139.
  29. Capdevila, L., Castro-Marrero, J., Alegre, J., Ramos-Castro, J., & Escorihuela, R. M. (2021). Analysis of gender differences in hrv of patients with myalgic encephalomyelitis/chronic fatigue syndrome using mobile-health technology. Sensors, 21(11).
  30. Capuana, L. J., Dywan, J., Tays, W. J., Elmers, J. L., Witherspoon, R., & Segalowitz, S. J. (2014). Factors influencing the role of cardiac autonomic regulation in the service of cognitive control. Biol Psychol, 120, 88–97.
  31. Casaleggio, A., Corana, A., & Ridella, S. (1995). Correlation dimension estimation from electrocardiograms. Chaos, Solitons & Fractals, 5(3-4), 713–726.
  32. Castaldo, R., Melillo, P., Bracale, U., Caserta, M., Triassi, M., & Pecchia, L. (2015). Acute mental stress assessment via short term HRV analysis in healthy adults: A systematic review with meta-analysis. Biomedical Signal Processing and Control, 18, 370–377.
  33. Castaldo, R., Xu, W., Melillo, P., Pecchia, L., Santamaria, L., & James, C. (2016). Detection of mental stress due to oral academic examination via ultra-short-term HRV analysis. Proc. 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), 3805–3808.
  34. Catai, A. M., Pastre, C. M., Godoy, M. F., Silva, E. D., Takahashi, A. C. M., & Vanderlei, L. C. M. (2019). Heart rate variability: are you using it properly? Standardisation checklist of procedures. Braz J Phys Ther., 24(2), 91–102.
  35. Chalmers, J. A., Quintana, D. S., Abbott, M. J., & Kemp, A. H. (2014). Anxiety disorders are associated with reduced heart rate variability: A meta-analysis. Frontiers in Psychiatry, 5(80), 1–11.
  36. Chandola, T., Heraclides, A., & Kumari, M. (2010). Psychophysiological biomarkers of workplace stressors. Neuroscience & Biobehavioral Reviews, 35(1), 51–57.
  37. Chen, C.-M., Anastasova, S., Zhang, K., Rosa, B. G., Lo, B. P. L., Assender, H. E., & Yang, G.-Z. (2020). Towards wearable and flexible sensors and circuits integration for stress monitoring. IEEE Journal of Biomedical and Health Informatics, 24(8), 2208–2215.
  38. Choi, H. A. (2017). Listening with your heart. Science Translational Medicine, 9(414).
  39. Choi, J., & Gutierrez-Osuna, R. (2011). Removal of respiratory influences from heart rate variability in stress monitoring. IEEE Sensors Journal, 11(11), 2649–2656.
  40. Chon, K. H., Scully, C. G., & Lu, S. (2009). Approximate entropy for all signals. IEEE Engineering in Medicine and Biology Magazine, 28(6), 18–23.
  41. Cox, J. R., Nolle, F. M., Fozzard, H. A., & Oliver, G. C. (1968). Aztec, a preprocessing program for real-time ecg rhythm analysis. IEEE Transactions on Biomedical Engineering, BME-15(2), 128–129.
  42. Cropanzano, R. S., Massaro, S., & Becker, W. J. (2017). Deontic justice and organizational neuroscience. Journal of Business Ethics, 144(4), 733–754.
  43. Crowley, O. V., McKinley, P. S., Burg, M. M., Schwartz, J. E., Ryff, C. D., Weinstein, M., Seeman, T. E., & Sloan, R. P. (2011). The interactive effect of change in perceived stress and trait anxiety on vagal recovery from cognitive challenge. International Journal of Psychophysiology, 82(3), 225–232.
  44. Daskalov, I. K., & Christov, I. I. (1999). Electrocardiogram signal pre processing for automatic detection of QRS boundaries. Medical Engineering & Physics, 21(1), 37–44.
  45. De Nadai, S., D’Incà, M., Parodi, F., Benza, M., Trotta, A., Zero, E., Zero, L., & Sacile, R. (2016). Enhancing safety of transport by road by on-line monitoring of driver emotions. Proc. IEEE 11th System of Systems Engineering Conference (SoSE), 1–4.
  46. Delmastro, F., Martino, F. D., & Dolciotti, C. (2020). Cognitive training and stress detection in mci frail older people through wearable sensors and machine learning. IEEE Access, 8, 65573–65590.
  47. Dobbs, S. E., Schmitt, N. M., & Ozemek, H. S. (1984). QRS detection by template matching using real-time correlation on a microcomputer. Journal of Clinical Engineering, 9(3), 197–212.
  48. Dossett, M. L., Fricchione, G. L., & Benson, H. (2020). A new era for mind–body medicine. New England Journal of Medicine, 382(15), 1390–1391.
  49. Eckberg, D. L. (1983). Human sinus arrhythmia as an index of vagal cardiac outflow. Journal of Applied Physiology, 54(4), 961–966.
  50. Elfenbein, H. A. (2017). Emotion in organizations: A review and theoretical integration. Academy of Management Annals, 1(1), 315–386.
  51. Engert, V., Kok, B. E., Papassotiriou, I., Chrousos, G. P., & Singer, T. (2017). Specific reduction in cortisol stress reactivity after social but not attention-based mental training. Sci Adv., 3(10).
  52. Engin, M. (2004). ECG beat classification using neuro-fuzzy network. Pattern Recognition Letters, 25(15), 1715–1722.
  53. Fox, C. J., Mueller, S. T., Gray, H. M., Raber, J., & Piper, B. J. (2013). Evaluation of a short-form of the Berg Card Sorting Test. PloS One, 8(5), 1–4.
  54. Friesen, G. M., Jannett, T. C., Jadallah, M. A., Yates, S. L., Quint, S., & Nagle, H. T. (1990). A comparison of the noise sensitivity of nine QRS detection algorithms. IEEE Transactions on Biomedical Engineering, 37(1), 85–98.
  55. Fukunishi, M., Kurita, K., Yamamoto, S., & Tsumura, N. (2018). Video based measurement of heart rate and heart rate variability spectrogram from estimated hemoglobin information. Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 1405–1412.
  56. Gabella, G. (2012). Structure of the autonomic nervous system. Springer.
  57. Garcia-Mancilla, J., & Gonzalez, V. M. (2015). Stress quantification using a wearable device for dail feedback to improve stress management. In X. Zheng, D. Zeng, H. Chen & L. S. (Eds.), Proc. International Conference on Smart Health (ICSH) (pp. 204–209). Springer, Cham.
  58. Garfinkel, S. N., Minati, L., Gray, M. A., Seth, A. K., Dolan, R. J., & Critchley, H. D. (2014). Fear from the heart: Sensitivity to fear stimuli depends on individual heartbeats. Journal of Neuroscience, 34(19), 6573–6582.
  59. Ghiasi, S., Greco, A., & Barbieri, R. e. a. (2020). Assessing Autonomic Function from Electrodermal Activity and Heart Rate Variability During Cold-Pressor Test and Emotional Challenge. Sci Rep, 10(5406), 1–13.
  60. Goldberg, L. S., & Grandey, A. A. (2007). Display rules versus display autonomy: Emotion regulation, emotional exhaustion, and task performance in a call center simulation. Journal of Occupational Health Psychology, 12(3), 301–318.
  61. Goldberger, J. J. (1999). Sympathovagal balance: how should we measure it? American Journal of Physiology-Heart and Circulatory Physiology, 276(4), H1273–H1280.
  62. Grossman, P., & Taylor, E. W. (2007). Toward understanding respiratory sinus arrhythmia: Relations to cardiac vagal tone, evolution and biobehavioral functions. Biological Psychology, 74(2), 263–285.
  63. Grossmann, I., Sahdra, B. K., & Ciarrochi, J. (2016). A heart and a mind: Self-distancing facilitates the association between heart rate variability, and wise reasoning. Frontiers in Behavioral Neuroscience, 10(68), 1–10.
  64. Hautala, A. J., Kiviniemi, A. M., & Tulppo, M. P. (2009). Individual responses to aerobic exercise: The role of the autonomic nervous system. Neuroscience & Biobehavioral Reviews, 33(2), 107–115.
  65. He, J., Li, K., Liao, X., Zhang, P., & Jiang, N. (2019). Real-time detection of acute cognitive stress using a convolutional neural network from electrocardio graphic signal. IEEE Access, 7, 42710–42717.
  66. He, R., Wang, K., & Li, Q. e. a. (2017). A novel method for the detection of R-peaks in ECG based on K-Nearest Neighbors and Particle Swarm Optimization. EURASIP J. Adv. Signal Process, 82, 1–14.
  67. Healey, J. (2015). Physiological sensing of emotion. In R. A. Calvo, S. D’Mello, J. M. Gratch & A. Kappas (Eds.), The oxford handbook of affective computing (pp. 1–22). Oxford University Press.
  68. Hernández-Vicente, A., Hernando, D., Marín-Puyalto, J., Vicente-Rodríguez, G., Garatachea, N. Pueyo, E., & Bailón, R. (2021). Validity of the Polar H7 Heart Rate Sensor for Heart Rate Variability Analysis during Exercise in Different Age, Body Composition and Fitness Level Groups. Sensors (Basel), 29(3), 1–14.
  69. Hjortskov, N., Rissén, D., Blangsted, A. K., Fallentin, N., Lundberg, U., & Søgaard, K. (2004). The effect of mental stress on heart rate variability and blood pressure during computer work. European Journal of Applied Physiology, 92(1-2), 84–89.
  70. Holzman, J. B., & Bridgett, D. J. (2017). Heart rate variability indices as bio-markers of top-down self-regulatory mechanisms: A meta-analytic review. Neuroscience & Biobehavioral Reviews, 74, 233–255.
  71. Hong, S., Zhou, Y., Shang, J., Xiao, C., & Sun, J. (2020). Opportunities and challenges of deep learning methods for electrocardiogram data: A systematic review. Computers in Biology and Medicine, 122, 103801.
  72. Ishaque, S., Khan, N., & Krishnan, S. (2021). Trends in heart-rate variability signal analysis. Frontiers in Digital Health, 3, 13.
  73. Israel, S. A., Irvine, J. M., Cheng, A., Wiederhold, M. D., & Wiederhold, B. K. (2005). ECG to identify individuals. Pattern recognition, 38(1), 133–142.
  74. Jatmiko, W., Ma’sum, M. A., Wisesa, H. A., & Sanabila, H. R. (2019). Developing smart Tele-ECG system for early detection and monitoring heart diseases based on ECG signal: progress and challenges. International Journal on Smart Sensing and Intelligent Systems, 12(1), 1–28.
  75. Jelinek, H. F., August, K. G., Imam, M. H., Khandoker, A. H., Koenig, A., & Riener, R. (2011). Cortical response to psycho-physiological changes in auto-adaptive robot assisted gait training. Proc. 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), 7409–7412.
  76. Kang, S. J., Lee, S. Y., Cho, H. I., & Park, H. (2016). Ecg authentication system design based on signal analysis in mobile and wearable devices. IEEE Signal Processing Letters, 23(6), 805–808.
  77. Keller, J., Bless, H., Blomann, F., & Kleinböhl, D. (2011). Physiological aspects of flow experiences: Skills-demand-compatibility effects on heart rate variability and salivary cortisol. Journal of Experimental Social Psychology, 47(4), 849–852.
  78. Kelsey, R. M., Soderlund, K., & Arthur, C. (2004). Cardiovascular reactivity and adaptation to recurrent psychological stress: Replication and extension. Psychophysiology, 41(6), 924–934.
  79. Kofman, O., Meiran, N., Greenberg, E., Balas, M., & Cohen, H. (2006). Enhanced performance on executive functions associated with examination stress: Evidence from task-switching and Stroop paradigms. Cognition & Emotion, 20(5), 577–595.
  80. Kontaxis, S., Orini, M., Gil, E., Posadas-de Miguel, M., Bernal, M. L., Aguiló, J., de la Camara, C., Laguna, P., & Bailón, R. (2018). Heart rate variability analysis guided by respiration in major depressive disorder. Proc. IEEE Computing in Cardiology Conference (CinC), 45, 1–4.
  81. Koren, A., Jurčević, M., & Prasad, R. (2020). Comparison of data-driven models for cleaning ehealth sensor data: Use case on ecg signal. Wireless Pers Commun, 114.
  82. Laborde, S., Mosley, E., & Mertgen, A. (2018). Vagal Tank Theory: The Three Rs of Cardiac Vagal Control Functioning - Resting, Reactivity, and Recovery. Front Neurosci., 12, 1–14.
  83. Laborde, S., Mosley, E., & Thayer, J. F. (2017). Heart Rate Variability and Cardiac Vagal Tone in Psychophysiological Research – Recommendations for Experiment Planning, Data Analysis, and Data Reporting. Frontiers in Psychology, 8, 213.
  84. Lackner, H. K., Papousek, I., Batzel, J. J., Roessler, A., Scharfetter, H., & Hinghofer-Szalkay, H. (2011). Phase synchronization of hemodynamic variables and respiration during mental challenge. International Journal of Psychophysiology, 79(3), 401–409.
  85. Laird, A. R., McMillan, K. M., Lancaster, J. L., Kochunov, P., Turkeltaub, P. E., Pardo, J. V., & Fox, P. T. (2005). A comparison of label-based review and ALE meta-analysis in the Stroop task. Human Brain Mapping, 25(1), 6–21.
  86. Lassoued, H., Ketata, R., & Yacoub, S. (2018). ECG decision support system based on feedforward neural networks. International Journal on Smart Sensing and Intelligent Systems, 11(1), 1–15.
  87. Lastre-Domínguez, C., Shmaliy, Y. S., Ibarra-Manzano, O., Munoz-Minjarez, J., & Vazquez-Olguin, M. (2018). Fiducial features extraction for ecg signals using state-space unbiased fir smoothing. 2018 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), 1–6.
  88. Lee WK, P. K., Yoon H. (2016). Smart ECG Monitoring Patch with Built-in R-Peak Detection for Long-Term HRV Analysis. Ann Biomed Eng, 74(7), 2292–2301.
  89. Lehrer, P., Vaschillo, E., Lu, S. E., Eckberg, D., Vaschillo, B., Scardella, A., & Habib, R. (2006). Heart rate variability biofeedback: Effects of age on heart rate variability, baroreflex gain, and asthma. Chest, 129(2), 278–284.
  90. Li, Z., Snieder, H., Su, S., Ding, X., Thayer, J. F., Treiber, F. A., & Wang, X. (2009). A longitudinal study in youth of heart rate variability at rest and in response to stress. International Journal of Psychophysiology, 73(3), 212–217.
  91. Liu, D., & Ulrich, M. (2014). Listen to your heart: Stress prediction using consumer heart rate sensors (tech. rep. CS 229: Machine Learning) [[Online]. Available: http://cs229.stanford.edu/proj2013/LiuUlrich-ListenToYourHeartStressPredictionUsingConsumerHeartRateSensors.pdf]. Computer Science Department, Stanford University. Stanford, CA, USA.
  92. Lombardi, F., & Stein, P. K. (2011). Origin of heart rate variability and turbulence: An appraisal of autonomic modulation of cardiovascular function. Frontiers in Physiology, 2(95), 1–7.
  93. Malik, M., Bigger, J. T., Camm, A. J., Kleiger, R. E., Malliani, A., Moss, A. J., & Schwartz, P. J. (1996). Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. European Heart Journal, 17(3), 354–381.
  94. Marques, A. H., Silverman, M. N., & Sternberg, E. (2010). Evaluation of stress systems by applying noninvasive methodologies: Measurements of neuroimmune biomarkers in the sweat, heart rate variability and salivary cortisol. Neuroimmunomodulation, 17(3), 205–208.
  95. Mason, O., Lynch, K., Rashid, M., Reid, A., Elashoff, R., & Victor, R. (2018). Systolic Blood Pressure as a Novel Determinant of Nocturia in Non-Hispanic Black Men. Journal of the American Society of Hypertension: JASH, 134.
  96. Masood, K., & Alghamdi, M. A. (2019). Modeling mental stress using a deep learning framework. IEEE Access, 7, 68446–68454.
  97. McDuff, D., Gontarek, S., & Picard, R. (2014). Remote measurement of cognitive stress via heart rate variability. Proc. 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), 2957–2960.
  98. Melillo, P., Bracale, M., & Pecchia, L. (2011). Nonlinear heart rate variability features for real-life stress detection. Case study: students under stress due to university examination. Biomedical Engineering Online, 10(1), 1–13.
  99. Melillo, P., De Luca, N., Bracale, M., & Pecchia, L. (2013). Classification tree for risk assessment in patients suffering from congestive heart failure via long-term heart rate variability. IEEE Journal of Biomedical and Health Informatics, 17(3), 727–733.
  100. Melillo, P., Izzo, R., De Luca, N., & Pecchia, L. (2012). Heart rate variability and target organ damage in hypertensive patients. BMC Cardiovascular Disorders, 12(105), 1–11.
  101. Merri, M., Farden, D. C., Mottley, J. G., & Titlebaum, E. L. (1990). Sampling frequency of the electrocardiogram for spectral analysis of the heart rate variability. IEEE Transactions on Biomedical Engineering, 37(1), 99–106.
  102. Mourtakos, S., Vasiliou, G., Papageorgiou, C., Konotangelos, K., Philippou, A., Bersimis, F., Geladas, N., Koutsilieris, M., Sidossis, L., Tsirmpas, C., & Papageorgiou, C. (2021). Resilience of the hellenic navy SEALs assessed by heart rate variability during cognitve tasks. European Heart Journal, 42(Supplement_1).
  103. Mporas, I., Tsirka, V., Zacharaki, E. I., Koutroumanidis, M., Richardson, M., & Megalooikonomou, V. (2015). Seizure detection using eeg and ecg signals for computer-based monitoring, analysis and management of epileptic patients. Expert Systems with Applications, 42(6), 3227–3233.
  104. Ni, A., Azarang, A., & Kehtarnavaz, N. (2021). A review of deep learning-based contactless heart rate measurement methods. Sensors, 21(11).
  105. Niskanen, J. P., Tarvainen, M. P., Ranta-Aho, P. O., & Karjalainen, P. A. (2004). Software for advanced HRV analysis. Computer Methods and Programs in Biomedicine, 76(1), 73–81.
  106. Nunan, D., Sandercock, G. R., & Brodie, D. A. (2010). A quantitative systematic review of normal values for short-term heart rate variability in healthy adults. Pacing and Clinical Electrophysiology, 33(11), 1407–1417.
  107. Pan, J., & Tompkins, W. J. (1985). A real-time QRS detection algorithm. IEEE Transactions on Biomedical Engineering, BME-32(3), 230–236.
  108. Pan, R. L. C., & Li, J. K. J. (2007). A noninvasive parametric evaluation of stress effects on global cardiovascular function. Cardiovascular Engineering, 7(2), 74–80.
  109. Papousek, I., Nauschnegg, K., Paechter, M., Lackner, H. K., Goswami, N., & Schulter, G. (2010). Trait and state positive affect and cardiovascular recovery from experimental academic stress. Biological Psychology, 83(2), 108–115.
  110. Pope, J. H., Aufderheide, T. P., Ruthazer, R., Woolard, R. H., Feldman, J. A., Beshansky, J. R., Griffith, J. L., & Selker, H. P. (2000). Missed diagnoses of acute cardiac ischemia in the emergency department. N Engl J Med., 342(16), 1163–1170.
  111. Pykett, J., Chrisinger, B., Kyriakou, K., Osborne, T., Resch, B., Stathi, A., Toth, E., & Whittaker, A. C. (2020). Developing a Citizen Social Science approach to understand urban stress and promote wellbeing in urban communities. Palgrave Commun, 6(85), 1–11.
  112. Quintana, D. S., & Heathers, J. A. (2014). Considerations in the assessment of heart rate variability in biobehavioral research. Frontiers in Psychology, 5(805), 1–10.
  113. Raaijmakers, S. F., Steel, F. W., de Goede, M., van Wouwe, N. C., van Erp, J. B., & Brouwer, A. M. (2013). Heart rate variability and skin conductance biofeedback: A triple-blind randomized controlled study. Proc. IEEE Humaine Association Conference on Affective Computing and Intelligent Interaction, 289–293.
  114. Rachakonda, L., Mohanty, S. P., & Kougianos, E. (2020). Ifeliz: An approach to control stress in the midst of the global pandemic and beyond for smart cities using the iomt. 2020 IEEE International Smart Cities Conference (ISC2), 1–7.
  115. Ribeiro, R. T., & Cunha, J. P. S. (2018). A regression approach based on separability maximization for modeling a continuous-valued stress index from electrocardiogram data. Biomedical Signal Processing and Control, 46, 33–45.
  116. Rudovic, Ognjen and Lee, Jaeryoung and Dai, Miles and Schuller, Björn and Picard, Rosalind W. (2018). Personalized machine learning for robot perception of affect and engagement in autism therapy. Science Robotics, 3(19).
  117. Saini, S. K., & Gupta, R. (2019). A review on ecg signal analysis for mental stress assessment. 2019 6th International Conference on Computing for Sustainable Global Development (INDIACom), 915–918.
  118. Salahuddin, L., Cho, J., Jeong, M. G., & Kim, D. (2007). Ultra short term analysis of heart rate variability for monitoring mental stress in mobile settings. Proc. 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), 4656–4659.
  119. Sano, A., & Picard, R. W. (2013). Stress recognition using wearable sensors and mobile phones. Proc. IEEE Humaine Association Conference on Affective Computing and Intelligent Interaction, 671–676.
  120. Satya, A. P. (2009). Effects of physical and mental tasks on heart rate variability (Master’s thesis) [Online]. Available: https://digitalcommons.lsu.edu/gradschool_theses/3928/]. Department of Construction Management & Industrial Engineering, Louisiana State University. Baton Rouge, LA 70803, USA.
  121. Saxena, S. C., Kumar, V., & Hamde, S. T. (2002). Feature extraction from ECG signals using wavelet transform for disease diagnostics. International Journal of Systems Science, 33(13), 1073–1085.
  122. Schubert, C., Lambertz, M., Nelesen, R. A., Bardwell, W., Choi, J. B., & Dimsdale, J. E. (2009). Effects of stress on heart rate complexity — A comparison between short-term and chronic stress. Biological Psychology, 80(3), 325–332.
  123. Sieciński, S., & Kostka, P. (2019). Influence of music on HRV indices derived from ECG and SCG [Online]. Available: http://dx.doi.org/10.13140/RG.2.2.30593.20329].
  124. Siegel, N. S., & Castellan, Jr., J. (1988). Non parametric statistics for the behavioral sciences (2nd). McGraw-Hill.
  125. Singh, R. R., Conjeti, S., & Banerjee, R. (2013). A comparative evaluation of neural network classifiers for stress level analysis of automotive drivers using physiological signals. Biomedical Signal Processing and Control, 8(6), 740–754.
  126. Sinha, A., Das, P., Gavas, R., Chatterjee, D., & Saha, S. K. (2016). Physiological sensing based stress analysis during assessment. Proc. IEEE Frontiers in Education Conference (FIE), 1–8.
  127. Sinha, A., Gavas, R., Chatterjee, D., Das, R., & Sinharay, A. (2015). Dynamic assessment of learners’ mental state for an improved learning experience. Proc. IEEE Frontiers in Education Conference (FIE), 1–9.
  128. Soekadar, S. R., Witkowski, M., Gómez, C., Opisso, E., Medina, J., Cortese, M., Cempini, M., Carrozza, M. C., Cohen, L. G., Birbaumer, N., & Vitiello, N. (2016). Hybrid EEG/EOG-base brain/neural hand exoskeleton restores fully independent daily living activities after quadriplegia. 1(1).
  129. Sutton, A. J., Abrams, K. R., Jones, D. R., Jones, D. R., Sheldon, T. A., & Song, F. (2000). Methods for meta-analysis in medical research. John Wiley.
  130. Tabar, Y. R., & Halici, U. (2016). A novel deep learning approach for classification of EEG motor imagery signals. Journal of Neural Engineering, 14(1), 1–11.
  131. Taelman, J., Vandeput, S., Vlemincx, E., Spaepen, A., & Van Huffel, S. (2011). Instantaneous changes in heart rate regulation due to mental load in simulated office work. European Journal of Applied Physiology, 111(7), 1497–1505.
  132. Takakura, I. T., Hoshi, R. A., Santos, M. A., Pivatelli, F. C., Nóbrega, J. H., Guedes, D. L. Nogueira, V. F., Frota, T. Q., Castelo, G. C., & Godoy, M. F. (2017). Recurrence Plots: a New Tool for Quantification of Cardiac Autonomic Nervous System Recovery after Transplant. Braz J Cardiovasc Surg., 32(4), 245–252.
  133. Tharion, E., Parthasarathy, S., & Neelakantan, N. (2009). Short-term heart rate variability measures in students during examinations. The National Medical Journal of India, 22(2), 63–66.
  134. Thayer, J. F., Åhs, F., Fredrikson, M., Sollers III, J. J., & Wager, T. D. (2012). A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neuroscience & Biobehavioral Reviews, 36(2), 747–756.
  135. Timothy, V., Prihatmanto, A. S., & Rhee, K. H. (2016). R-to-R extraction and preprocessing procedure for an automated diagnosis of various diseases from ECG data. Journal of Multimedia and Information System, 3(2), 1–8.
  136. Traina, M., Cataldo, A., Galullo, F., & Russo, G. (2011). Effect of anxiety due to mental stress on heart rate variability in healthy subjects. Minerva Psichiatrica, 52(4), 227–231.
  137. Visnovcova, Z., Mestanik, M., Javorka, M., Mokra, D., Gala, M., Jurko, A., Calkovska, A., & Tonhajzerova, I. (2014). Complexity and time asymmetry of heart rate variability are altered in acute mental stress. Physiological Measurement, 35(7), 1319–1334.
  138. Vuksanović V, G. V. (2007). Heart rate variability in mental stress aloud. Med Eng Phys., 29(3), 344–349. https://doi.org/10.1016/j.medengphy.2006.05.011
  139. Wu, W., Pirbhulal, S., Zhang, H., & Mukhopadhyay, S. C. (2019). Quantitative assessment for self-tracking of acute stress based on triangulation principle in a wearable sensor system. IEEE Journal of Biomedical and Health Informatics, 23(2), 703–713.
  140. Ye, C., Vijaya Kumar, B. V. K., & Coimbra, M. T. (2012). Heartbeat classification using morphological and dynamic features of ecg signals. IEEE Transactions on Biomedical Engineering, 59(10), 2930–2941.
  141. Yu, X., & Zhang, J. (2012). Estimating the cortex and autonomic nervous activity during a mental arithmetic task. Biomedical Signal Processing and Control, 7(3), 303–308.
  142. Zandbelt, B. B., Gladwin, T. E., Raemaekers, M., van Buuren, M., Neggers, S. F., Kahn, R. S., Ramsey, N. F., & Vink, M. (2008). Within-subject variation in BOLD-fMRI signal changes across repeated measurements: Quantification and implications for sample size. Neuroimage, 42(1), 196–206.
Language: English
Submitted on: Sep 4, 2023
Published on: Jun 23, 2025
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2025 Sudhangshu Sarkar, Anilesh Dey, Aniruddha Chandra, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.