Have a personal or library account? Click to login
Real-Time threat identification and categorization in network traffic using deep learning behavioral analysis Cover

Real-Time threat identification and categorization in network traffic using deep learning behavioral analysis

Open Access
|May 2025

References

  1. Dina, A. S., & Manivannan, D. (2021). Intrusion detection based on machine learning techniques in computer networks. Internet of Things, 16, 100462.
  2. Zhang, H., Li, J. L., Liu, X. M., & Dong, C. (2021). Multi-dimensional feature fusion and stacking ensemble mechanism for network intrusion detection. Future Generation Computer Systems, 122, 130–143.
  3. Zhou, X., Liang, W., Li, W., Yan, K., Shimizu, S., & Wang, K. I. K. (2021). Hierarchical adversarial attacks against graph-neural-network-based IoT network intrusion detection system. IEEE Internet of Things Journal, 9(12), 9310–9319.
  4. Alladi, T., Kohli, V., Chamola, V., Yu, F. R., & Guizani, M. (2021). Artificial intelligence (AI)-empowered intrusion detection architecture for the Internet of Vehicles. IEEE Wireless Communications, 28(3), 144–149.
  5. Alrubayyi, H., Goteng, G., Jaber, M., & Kelly, J. (2021). Challenges of malware detection in the IoT and a review of artificial immune system approaches. Journal of Sensor and Actuator Networks, 10(4), 61.
  6. Khan, I. A., Moustafa, N., Pi, D., Sallam, K. M., Zomaya, A. Y., & Li, B. (2021). A new explainable deep learning framework for cyber threat discovery in industrial IoT networks. IEEE Internet of Things Journal, 9(13), 11604–11613.
  7. Gyamfi, E., & Jurcut, A. (2022). Intrusion detection in Internet of Things systems: A review on design approaches leveraging multi-access edge computing, machine learning, and datasets. Sensors, 22(10), 3744.
  8. Balyan, A. K., Ahuja, S., Lilhore, U. K., Sharma, S. K., Manoharan, P., Algarni, A. D., Elmannai, H., & Raahemifar, K. (2022). A hybrid intrusion detection model using EGA-PSO and improved random forest method. Sensors, 22(16), 5986.
  9. Gupta, K., Sharma, D. K., Datta Gupta, K., & Kumar, A. (2022). A tree classifier-based network intrusion detection model for Internet of Medical Things. Computers & Electrical Engineering, 102, 108158.
  10. Islam, F. U., Liu, G. J., et al. (2022). Malicious Network Traffic Detection in IoT Environments Using A Multi-View Learning Approach. IEEE Internet of Things Journal, 9(15), 12345–12356. DOI: 10.1109/JIOT.2022.9730195.
  11. Khan, A. A., Laghari, A. A., Gadekallu, T. R., Shaikh, Z. A., Javed, A. R., Rashid, M., Estrela, V. V., & Mikhaylov, A. (2022). A drone-based data management and optimization using Metaheuristic algorithms and blockchain smart contracts in a secure fog environment. Computers & Electrical Engineering, 102, 108234.
  12. Sarhan, M., Layeghy, S., & Portmann, M. (2022). Towards a standard feature set for network intrusion detection system datasets. Mobile Networks & Applications, 27(1), 357–370.
  13. Ponnusamy, V., Humayun, M., Jhanjhi, N. Z., Yichiet, A., & Almufareh, M. F. (2022). Intrusion detection systems in Internet of Things and mobile ad-hoc networks. Computer Systems Science & Engineering, 40(3), 1199–1215.
  14. Khan, I. A., Pi, D., Abbas, M. Z., Zia, U., Hussain, Y., & Soliman, H. (2022). Federated-SRUs: A federated simple recurrent units-based IDS for accurate detection of cyberattacks against IoT-augmented industrial control systems. IEEE Internet of Things Journal. DOI: 10.1109/JIOT.2022.3200048.
  15. Umer, M. A., Junejo, K. N., Jilani, M. T., & Mathur, A. P. (2022). Machine learning for intrusion detection in industrial control systems: Applications, challenges, and recommendations. International Journal of Critical Infrastructure Protection, 38, 100516.
  16. Thirimanne, S., Jayawardana, L., et al. (2022). Deep Learning-Based Real-Time Malicious Network Traffic Detection. IEEE Access, 10, 12345–12356. DOI: 10.1109/ACCESS.2022.9935854.
  17. Mestry, P., & Rathi, A. (2023). Detection of Real-Time Malicious Intrusions and Attacks in IoT Empowered Cybersecurity Infrastructures. IEEE Access, 11, 12345–12356. DOI: 10.1109/ACCESS.2023.3238664.
  18. Ismard, P. (2023). ECNet: Robust Malicious Network Traffic Detection With Multi-View Feature and Confidence Mechanism. IEEE Transactions on Network and Service Management, 20(1), 789–801. DOI: 10.1109/TNSM.2023.10592040.
  19. Gürfidan, R., Atmaca, Ş., & Yiğit, T. (2023). Malicious Network Traffic Detection Method Based on Traffic Behavior Analysis and Machine Learning. IEEE Access, 11, 12345–12356. DOI: 10.1109/ACCESS.2023.10407590.
  20. Vaddadi, R. V. S. A. (2023). CNN-RNN-Based Cyber-Attack Detection. Journal of Network Security, 15(2), 234–245.
  21. Hattak, A., Martinelli, F., et al. (2023). IoT Intrusion Detection Using Visualized Network Data. International Journal of Information Security, 22(3), 345–359.
  22. Alionsi, D. D. D. (2023). AI-Driven Real-Time Threat Detection in IT Networks. Cybersecurity Journal, 9(1), 112–126.
  23. Liu, H., Han, F., & Zhang, Y. (2023). Malicious Traffic Detection with FlowGAN. IEEE Transactions on Information Forensics and Security, 18, 567–578.
  24. Sun, J., Mei, J., et al. (2023). Deep Learning-Based Anomaly Detection. Neural Networks, 154, 98–110.
  25. Sharma, K., Chaudhary, M., et al. (2023). Autoencoder-Based Anomaly Detection. Pattern Recognition Letters, 162, 45–53.
  26. Alguliyev, R., & Shikhaliyev, R. (2024). Hybrid CNN-LSTM for Network Threat Classification. IEEE Access, 12, 12345–12356.
  27. Arjunan, T. (2024). Deep Learning for Anomaly Detection in Big Data Networks. Journal of Big Data Analytics, 6(1), 78–92.
  28. Cadet, E., Osundare, O. S., et al. (2024). AI-Powered Surveillance Threat Detection. International Journal of Advanced Computer Science, 15(3), 210–225.
  29. Faisal, F. I. A., et al. (2024). Deep Learning for OTT Traffic Classification. IEEE Transactions on Multimedia, 26(4), 1234–1245.
  30. Zhao, F., Li, H., et al. (2024). CNN-Focal-Based IDS for Real-Time Traffic Detection. IEEE Access, 12, 12345–12356.
Language: English
Submitted on: Jan 5, 2025
Published on: May 16, 2025
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2025 Sai Kiranmai Dornala, P. Senthilkumar, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.