References
- Dina, A. S., & Manivannan, D. (2021). Intrusion detection based on machine learning techniques in computer networks. Internet of Things, 16, 100462.
- Zhang, H., Li, J. L., Liu, X. M., & Dong, C. (2021). Multi-dimensional feature fusion and stacking ensemble mechanism for network intrusion detection. Future Generation Computer Systems, 122, 130–143.
- Zhou, X., Liang, W., Li, W., Yan, K., Shimizu, S., & Wang, K. I. K. (2021). Hierarchical adversarial attacks against graph-neural-network-based IoT network intrusion detection system. IEEE Internet of Things Journal, 9(12), 9310–9319.
- Alladi, T., Kohli, V., Chamola, V., Yu, F. R., & Guizani, M. (2021). Artificial intelligence (AI)-empowered intrusion detection architecture for the Internet of Vehicles. IEEE Wireless Communications, 28(3), 144–149.
- Alrubayyi, H., Goteng, G., Jaber, M., & Kelly, J. (2021). Challenges of malware detection in the IoT and a review of artificial immune system approaches. Journal of Sensor and Actuator Networks, 10(4), 61.
- Khan, I. A., Moustafa, N., Pi, D., Sallam, K. M., Zomaya, A. Y., & Li, B. (2021). A new explainable deep learning framework for cyber threat discovery in industrial IoT networks. IEEE Internet of Things Journal, 9(13), 11604–11613.
- Gyamfi, E., & Jurcut, A. (2022). Intrusion detection in Internet of Things systems: A review on design approaches leveraging multi-access edge computing, machine learning, and datasets. Sensors, 22(10), 3744.
- Balyan, A. K., Ahuja, S., Lilhore, U. K., Sharma, S. K., Manoharan, P., Algarni, A. D., Elmannai, H., & Raahemifar, K. (2022). A hybrid intrusion detection model using EGA-PSO and improved random forest method. Sensors, 22(16), 5986.
- Gupta, K., Sharma, D. K., Datta Gupta, K., & Kumar, A. (2022). A tree classifier-based network intrusion detection model for Internet of Medical Things. Computers & Electrical Engineering, 102, 108158.
- Islam, F. U., Liu, G. J., et al. (2022). Malicious Network Traffic Detection in IoT Environments Using A Multi-View Learning Approach. IEEE Internet of Things Journal, 9(15), 12345–12356. DOI: 10.1109/JIOT.2022.9730195.
- Khan, A. A., Laghari, A. A., Gadekallu, T. R., Shaikh, Z. A., Javed, A. R., Rashid, M., Estrela, V. V., & Mikhaylov, A. (2022). A drone-based data management and optimization using Metaheuristic algorithms and blockchain smart contracts in a secure fog environment. Computers & Electrical Engineering, 102, 108234.
- Sarhan, M., Layeghy, S., & Portmann, M. (2022). Towards a standard feature set for network intrusion detection system datasets. Mobile Networks & Applications, 27(1), 357–370.
- Ponnusamy, V., Humayun, M., Jhanjhi, N. Z., Yichiet, A., & Almufareh, M. F. (2022). Intrusion detection systems in Internet of Things and mobile ad-hoc networks. Computer Systems Science & Engineering, 40(3), 1199–1215.
- Khan, I. A., Pi, D., Abbas, M. Z., Zia, U., Hussain, Y., & Soliman, H. (2022). Federated-SRUs: A federated simple recurrent units-based IDS for accurate detection of cyberattacks against IoT-augmented industrial control systems. IEEE Internet of Things Journal. DOI: 10.1109/JIOT.2022.3200048.
- Umer, M. A., Junejo, K. N., Jilani, M. T., & Mathur, A. P. (2022). Machine learning for intrusion detection in industrial control systems: Applications, challenges, and recommendations. International Journal of Critical Infrastructure Protection, 38, 100516.
- Thirimanne, S., Jayawardana, L., et al. (2022). Deep Learning-Based Real-Time Malicious Network Traffic Detection. IEEE Access, 10, 12345–12356. DOI: 10.1109/ACCESS.2022.9935854.
- Mestry, P., & Rathi, A. (2023). Detection of Real-Time Malicious Intrusions and Attacks in IoT Empowered Cybersecurity Infrastructures. IEEE Access, 11, 12345–12356. DOI: 10.1109/ACCESS.2023.3238664.
- Ismard, P. (2023). ECNet: Robust Malicious Network Traffic Detection With Multi-View Feature and Confidence Mechanism. IEEE Transactions on Network and Service Management, 20(1), 789–801. DOI: 10.1109/TNSM.2023.10592040.
- Gürfidan, R., Atmaca, Ş., & Yiğit, T. (2023). Malicious Network Traffic Detection Method Based on Traffic Behavior Analysis and Machine Learning. IEEE Access, 11, 12345–12356. DOI: 10.1109/ACCESS.2023.10407590.
- Vaddadi, R. V. S. A. (2023). CNN-RNN-Based Cyber-Attack Detection. Journal of Network Security, 15(2), 234–245.
- Hattak, A., Martinelli, F., et al. (2023). IoT Intrusion Detection Using Visualized Network Data. International Journal of Information Security, 22(3), 345–359.
- Alionsi, D. D. D. (2023). AI-Driven Real-Time Threat Detection in IT Networks. Cybersecurity Journal, 9(1), 112–126.
- Liu, H., Han, F., & Zhang, Y. (2023). Malicious Traffic Detection with FlowGAN. IEEE Transactions on Information Forensics and Security, 18, 567–578.
- Sun, J., Mei, J., et al. (2023). Deep Learning-Based Anomaly Detection. Neural Networks, 154, 98–110.
- Sharma, K., Chaudhary, M., et al. (2023). Autoencoder-Based Anomaly Detection. Pattern Recognition Letters, 162, 45–53.
- Alguliyev, R., & Shikhaliyev, R. (2024). Hybrid CNN-LSTM for Network Threat Classification. IEEE Access, 12, 12345–12356.
- Arjunan, T. (2024). Deep Learning for Anomaly Detection in Big Data Networks. Journal of Big Data Analytics, 6(1), 78–92.
- Cadet, E., Osundare, O. S., et al. (2024). AI-Powered Surveillance Threat Detection. International Journal of Advanced Computer Science, 15(3), 210–225.
- Faisal, F. I. A., et al. (2024). Deep Learning for OTT Traffic Classification. IEEE Transactions on Multimedia, 26(4), 1234–1245.
- Zhao, F., Li, H., et al. (2024). CNN-Focal-Based IDS for Real-Time Traffic Detection. IEEE Access, 12, 12345–12356.