Phys. Rev. Lett. 120, 198001 (2018) - Elastohydrodynamic Lif t at a Soft Wall Available online: <a href="https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.198001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.198001</a> (accessed on 6 December 2024).
The Cost-Effectiveness of Point of Care Testing in a General Practice Setting: Results from a Randomised Controlled Trial | BMC Health Services Research | Full Text Available online: <a href="https://bmchealthservres.biomedcentral.com/articles/10.1186/1472-6963-10-165" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://bmchealthservres.biomedcentral.com/articles/10.1186/1472-6963-10-165</a> (accessed on 6 December 2024).
Grönland, T.-A.; Rangsten, P.; Nese, M.; Lang, M. Miniaturization of Components and Systems for Space Using MEMS-Technology. Acta Astronautica 2007, 61, 228–233, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.actaastro.2007.01.029" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.actaastro.2007.01.029</a></pub-id>.
Yang, K.; Zhou, J.; Zhao, J.; Liu, L.; Hua, C.; Hong, C.; Wang, M.; Hu, A.; Zhang, W.; Cui, J.; et al. Mobile Lab: A Novel Pathogen Assay Using the Nucleic Acid Automatic Assay System Assisted by a Self-Contained Microfluidic Cassette and Chitosan Decorating Magnetic Particles. Sensors and Actuators B: Chemical 2024, 419, 136413, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.snb.2024.136413" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.snb.2024.136413</a></pub-id>.
Seong, H.; Park, J.; Bae, M.; Shin, S. Rapid and Efficient Extraction of Cell-Free DNA Using Homobifunctional Crosslinkers. Biomedicines 2022, 10, 1883, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.3390/biomedicines10081883" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/biomedicines10081883</a></pub-id>.
Schneider, L.; Cui, F.; Tripathi, A. Isolation of Target DNA Using Synergistic Magnetic Bead Transport and Electrokinetic Flow. Biomicrofluidics 2021, 15, 024104, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1063/5.0045307" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1063/5.0045307</a></pub-id>.
Huang, J.; Xia, L.; Xiao, X.; Li, G. A Recyclable PDMS Microfluidic Surface-Enhanced Raman Scattering Cu/AgNP Chip for the Analysis of Sulfadiazine in Aquatic Products. New J. Chem. 2024, 48, 11457–11464, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1039/D4NJ01825G" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1039/D4NJ01825G</a></pub-id>.
Lyu, C.; Jiang, Y.; Dai, Z.; Xu, X.; Cai, Y.; Liang, B.; Zhou, C.; Ye, X.; Wang, J. Optimizing Magnetic Separation and Cleaning Module in Fully Automated Chemiluminescence Immunoassay Analyzer Using a Special Arrangement of Spliced Magnets and a Three-Stage Magnetic Bead Collection Method. Magnetochemistry 2024, 10, 75, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.3390/magnetochemistry10100075" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/magnetochemistry10100075</a></pub-id>.
Zhang, J.; Su, X.; Xu, J.; Wang, J.; Zeng, J.; Li, C.; Chen, W.; Li, T.; Min, X.; Zhang, D.; et al. A Point of Care Platform Based on Microfluidic Chip for Nucleic Acid Extraction in Less than 1 Minute. Biomicrofluidics 2019, 13, 034102, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1063/1.5088552" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1063/1.5088552</a></pub-id>.
Ji, T.; Liu, Z.; Wang, G.; Guo, X.; Akbar Khan, S.; Lai, C.; Chen, H.; Huang, S.; Xia, S.; Chen, B.; et al. Detection of COVID-19: A Review of the Current Literature and Future Perspectives. Biosens Bioelectron 2020, 166, 112455, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.bios.2020.112455" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.bios.2020.112455</a></pub-id>.
Ling, W.; Zhou, W.; Cui, J.; Shen, Z.; Wei, Q.; Chu, X. Experimental Study on the Heating/Cooling and Temperature Uniformity Performance of the Microchannel Temperature Control Device for Nucleic Acid PCR Amplification Reaction of COVID-19. Applied Thermal Engineering 2023, 226, 120342, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.applthermaleng.2023.120342" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.applthermaleng.2023.120342</a></pub-id>.
Chen, X.; Song, L.; Assadsangabi, B.; Fang, J.; Mohamed Ali, M.S.; Takahata, K. Wirelessly Addressable Heater Array for Centrifugal Microfluidics and Escherichia Coli Sterilization. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); July 2013; pp. 5505–5508.
Yeom, D.; Kim, J.; Kim, S.; Ahn, S.; Choi, J.; Kim, Y.; Koo, C. A Thermocycler Using a Chip Resistor Heater and a Glass Microchip for a Portable and Rapid Microchip-Based PCR Device. Micromachines (Basel) 2022, 13, 339, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.3390/mi13020339" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/mi13020339</a></pub-id>.
Petralia, Salvatore & Castagna, Maria Eloisa & Spata, Massimo & Amore, Maria & Conoci, Sabrina. (2016). A Point of Care Real Time PCR Platform Based on Silicon Technology. Biosensors Journal. 5. doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.4172/2090-4967.1000136" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.4172/2090-4967.1000136</a></pub-id>.
Si, H.; Xu, G.; Jing, F.; Sun, P.; Zhao, D.; Wu, D. A Multi-Volume Microfluidic Device with No Reagent Loss for Low-Cost Digital PCR Application. Sensors and Actuators B: Chemical 2020, 318, 128197, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.snb.2020.128197" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.snb.2020.128197</a></pub-id>.
Effect of Gadolinium Doping on the Structure of Ce1-xGdxO2-x/2 Solid Solutions Prepared by Ionic Gelation Approach | Ilcheva | Emerging Science Journal Available online: <a href="https://www.ijournalse.org/index.php/ESJ/article/view/2504" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://www.ijournalse.org/index.php/ESJ/article/view/2504</a> (accessed on 6 December 2024).
Rabe, B. A., & Cepko, C. (2020). SARSCoV-2 detection using isothermal amplification and a rapid, inexpensive protocol for sample inactivation and purification. Proceedings of the National Academy of Sciences of the United States of America, 117(39), 24450–24458. <a href="https://doi.org/10.1073/pnas.2011221117" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1073/pnas.2011221117</a>.
El-Tholoth, M.; Bai, H.; Mauk, M.G.; Saif, L.; Bau, H.H. A Portable, 3D Printed, Microfluidic Device for Multiplexed, Real Time, Molecular Detection of the Porcine Epidemic Diarrhea Virus, Transmissible Gastroenteritis Virus, and Porcine Deltacoronavirus at the Point of Need. Lab Chip 2021, 21, 1118–1130, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1039/d0lc01229g" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1039/d0lc01229g</a></pub-id>.
Daposang, E.S.; Hasanah, F.; Silaban, D. PROFILE OF PULMONARY AND EXTRA PULMONARY TUBERCULOSIS USE GENEXPER AT THE PIRNGADI HOSPITAL MEDAN. BIOLINK (Jurnal Biologi Lingkungan Industri Kesehatan) 2021, 8, 44–52, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.31289/biolink.v8i1.4638" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.31289/biolink.v8i1.4638</a></pub-id>.
Smithgall, M.C.; Scherberkova, I.; Whittier, S.; Green, D.A. Comparison of Cepheid Xpert Xpress and Abbott ID Now to Roche Cobas for the Rapid Detection of SARS-CoV-2. Journal of Clinical Virology 2020, 128, 104428, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.jcv.2020.104428" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jcv.2020.104428</a></pub-id>.
Spibey, C.A.; Jackson, P.; Herick, K. A Unique Charge-Coupled Device/Xenon Arc Lamp Based Imaging System for the Accurate Detection and Quantitation of Multicolour Fluorescence. ELECTROPHORESIS 2001, 22, 829–836, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1002/1522-2683()22:5<" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/1522-2683()22:5<</a>;829::AID-ELPS829>3.0.CO;2-U</pub-id>.
Chen, P.; Pan, D.; Mao, Z. Fluorescence Measured Using a Field-Portable Laser Fluorometer as a Proxy for CDOM Absorption. Estuarine, Coastal and Shelf Science 2014, 146, 33–41, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.ecss.2014.05.010" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ecss.2014.05.010</a></pub-id>.
Li, Z.; Bai, Y.; You, M.; Hu, J.; Yao, C.; Cao, L.; Xu, F. Fully Integrated Microfluidic Devices for Qualitative, Quantitative and Digital Nucleic Acids Testing at Point of Care. Biosensors and Bioelectronics 2021, 177, 112952, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.bios.2020.112952" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.bios.2020.112952</a></pub-id>.
POCT Analysts’ Perspective: Practices and Wants for Improvement | The Journal of Applied Laborator y Medicine | Oxford Academic Available online: <a href="https://academic.oup.com/jalm/article/5/3/480/5827435?login=false" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://academic.oup.com/jalm/article/5/3/480/5827435?login=false</a> (accessed on 6 December 2024).
Point-of-Care Testing (POCT) and IT Security Concepts Available online: <a href="https://www.degruyter.com/document/doi/10.1515/labmed-2019-0199/html" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://www.degruyter.com/document/doi/10.1515/labmed-2019-0199/html</a> (accessed on 6 December 2024).
Liu, D.; Wang, Y.; Li, X.; Li, M.; Wu, Q.; Song, Y.; Zhu, Z.; Yang, C. Integrated Microfluidic Devices for in Vitro Diagnostics at Point of Care., doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1002/agt2.184" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/agt2.184</a></pub-id>.