Have a personal or library account? Click to login
Research on real-time nucleic acid detection device based on microfluidic technology Cover

Research on real-time nucleic acid detection device based on microfluidic technology

Open Access
|Mar 2025

References

  1. Mangal, M.; Bansal, S.; Sharma, S.K.; Gupta, R.K. Molecular Detection of Foodborne Pathogens: A Rapid and Accurate Answer to Food Safety. Crit Rev Food Sci Nutr 2016, 56, 1568–1584, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1080/10408398.2013.782483" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/10408398.2013.782483</a></pub-id>.
  2. Wang, Y.; Wang, C.; Zhou, Z.; Si, J.; Li, S.; Zeng, Y.; Deng, Y.; Chen, Z. Advances in Simple, Rapid, and Contamination-Free Instantaneous Nucleic Acid Devices for Pathogen Detection. Biosensors (Basel) 2023, 13, 732, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.3390/bios13070732" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/bios13070732</a></pub-id>.
  3. Phys. Rev. Lett. 120, 198001 (2018) - Elastohydrodynamic Lif t at a Soft Wall Available online: <a href="https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.198001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.198001</a> (accessed on 6 December 2024).
  4. The Cost-Effectiveness of Point of Care Testing in a General Practice Setting: Results from a Randomised Controlled Trial | BMC Health Services Research | Full Text Available online: <a href="https://bmchealthservres.biomedcentral.com/articles/10.1186/1472-6963-10-165" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://bmchealthservres.biomedcentral.com/articles/10.1186/1472-6963-10-165</a> (accessed on 6 December 2024).
  5. Yeh, E.-C.; Fu, C.-C.; Hu, L.; Thakur, R.; Feng, J.; Lee, L.P. Self-Powered Integrated Microfluidic Point-of-Care Low-Cost Enabling (SIMPLE) Chip. Sci Adv 2017, 3, e1501645, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1126/sciadv.1501645" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1126/sciadv.1501645</a></pub-id>.
  6. Kim, K.R.; Yeo, W.-H. Advances in Sensor Developments for Cell Culture Monitoring. BMEMat 2023, 1, e12047, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1002/bmm2.12047" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/bmm2.12047</a></pub-id>.
  7. Beltrán-Pavez, C.; Alonso-Palomares, L.A.; Valiente-Echeverría, F.; Gaggero, A.; Soto-Rifo, R.; Barriga, G.P. Accuracy of a RT-qPCR SARS-CoV-2 Detection Assay without Prior RNA Extraction. J Virol Methods 2021, 287, 113969, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.jviromet.2020.113969" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jviromet.2020.113969</a></pub-id>.
  8. Paul, R.; Ostermann, E.; Wei, Q. Advances in Point-of-Care Nucleic Acid Extraction Technologies for Rapid Diagnosis of Human and Plant Diseases. Biosens Bioelectron 2020, 169, 112592, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.bios.2020.112592" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.bios.2020.112592</a></pub-id>.
  9. Abraham, G.R.; Chaderjian, A.S.; Nguyen, A.B.N.; Wilken, S.; Saleh, O.A. Nucleic Acid Liquids. Rep. Prog. Phys. 2024, 87, 066601, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1088/1361-6633/ad4662" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1088/1361-6633/ad4662</a></pub-id>.
  10. Wiraswati, H.L.; Ma’ruf, I.F.; Ekawardhani, S.; Faridah, L.; Laelalugina, A.; Septanto, H.; Djati, I.D.; Gaffar, S.; Awaludin, A. Optimization of Nucleic Acid Extraction Methods for Rapid Detection in Pandemic Situations or Diseases with High Prevalence. Journal of Pharmaceutical Analysis 2023, 13, 1577–1579, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.jpha.2023.08.005" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jpha.2023.08.005</a></pub-id>.
  11. Li, P.; Li, M.; Yue, D.; Chen, H. Solid-phase Extraction Methods for Nucleic Acid Separation. A Review. J of Separation Science 2022, 45, 172–184, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1002/jssc.202100295" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/jssc.202100295</a></pub-id>.
  12. Fan, Y.; Dai, R.; Guan, X.; Lu, S.; Yang, C.; Lv, X.; Li, X. Rapid Automatic Nucleic Acid Purification System Based on Gas–Liquid Immiscible Phase. Journal of Separation Science 2023, 46, 2200801, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1002/jssc.202200801" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/jssc.202200801</a></pub-id>.
  13. Wu, Q.; Jin, W.; Zhou, C.; Han, S.; Yang, W.; Zhu, Q.; Jin, Q.; Mu, Y. Integrated Glass Microdevice for Nucleic Acid Purification, Loop-Mediated Isothermal Amplification, and Online Detection. Anal. Chem. 2011, 83, 3336–3342, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1021/ac103129e" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1021/ac103129e</a></pub-id>.
  14. Ji, H.M.; Samper, V.; Chen, Y.; Hui, W.C.; Lye, H.J.; Mustafa, F.B.; Lee, A.C.; Cong, L.; Heng, C.K.; Lim, T.M. DNA Purification Silicon Chip. Sensors and Actuators A: Physical 2007, 139, 139–144, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.sna.2007.05.033" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.sna.2007.05.033</a></pub-id>.
  15. Easley, C.J.; Karlinsey, J.M.; Bienvenue, J.M.; Legendre, L.A.; Roper, M.G.; Feldman, S.H.; Hughes, M.A.; Hewlett, E.L.; Merkel, T.J.; Ferrance, J.P.; et al. A Fully Integrated Microfluidic Genetic Analysis System with Sample-in-Answer-out Capability. Proc Natl Acad Sci U S A 2006, 103, 19272–19277, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1073/pnas.0604663103" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1073/pnas.0604663103</a></pub-id>.
  16. Hu, F.; Li, J.; Peng, N.; Li, Z.; Zhang, Z.; Zhao, S.; Duan, M.; Tian, H.; Li, L.; Zhang, P. Rapid Isolation of cfDNA from Large-Volume Whole Blood on a Centrifugal Microfluidic Chip Based on Immiscible Phase Filtration. Analyst 2019, 144, 4162–4174, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1039/C9AN00493A" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1039/C9AN00493A</a></pub-id>.
  17. Jamshaid, T.; Neto, E.T.T.; Eissa, M.M.; Zine, N.; Kunita, M.H.; El-Salhi, A.E.; Elaissari, A. Magnetic Particles: From Preparation to Lab-on-a-Chip, Biosensors, Microsystems and Microfluidics Applications. TrAC Trends in Analytical Chemistry 2016, 79, 344–362, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.trac.2015.10.022" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.trac.2015.10.022</a></pub-id>.
  18. Song, H.; Khan, M.; Yu, L.; Wang, Y.; Lin, J.-M.; Hu, Q. Construction of Liquid Crystal-Based Sensors Using Enzyme-Linked Dual-Functional Nucleic Acid on Magnetic Beads. Anal. Chem. 2023, 95, 13385–13390, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1021/acs.analchem.3c03163" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1021/acs.analchem.3c03163</a></pub-id>.
  19. Tang, C.; He, Z.; Liu, H.; Xu, Y.; Huang, H.; Yang, G.; Xiao, Z.; Li, S.; Liu, H.; Deng, Y.; et al. Application of Magnetic Nanoparticles in Nucleic Acid Detection. J Nanobiotechnology 2020, 18, 62, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1186/s12951-020-00613-6" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1186/s12951-020-00613-6</a></pub-id>.
  20. Wu, M.; Huang, Y.; Huang, Y.; Wang, H.; Li, M.; Zhou, Y.; Zhao, H.; Lan, Y.; Wu, Z.; Jia, C.; et al. Droplet Magnetic-Controlled Microfluidic Chip Integrated Nucleic Acid Extraction and Amplification for the Detection of Pathogens and Tumor Mutation Sites. Analytica Chimica Acta 2023, 1271, 341469, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.aca.2023.341469" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.aca.2023.341469</a></pub-id>.
  21. Shen, H.; Dong, L.; Gao, Y.; Wang, X.; Dai, X. Integrated Microwell Array-Based Microfluidic Chip with a Hand-Held Smartphone-Controlled Device for Nucleic Acid Detection. Analytical Chemistry 2023, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1021/acs.analchem.3c03525" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1021/acs.analchem.3c03525</a></pub-id>.
  22. Li, J.; Gao, Z.; Jia, C.; Cai, G.; Feng, S.; Wu, M.; Zhao, H.; Yu, J.; Bao, F.; Cong, H.; et al. Simultaneous Detection of Multiple Respiratory Pathogens Using an Integrated Microfluidic Chip. Anal Chem 2024, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1021/acs.analchem.4c00990" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1021/acs.analchem.4c00990</a></pub-id>.
  23. Grönland, T.-A.; Rangsten, P.; Nese, M.; Lang, M. Miniaturization of Components and Systems for Space Using MEMS-Technology. Acta Astronautica 2007, 61, 228–233, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.actaastro.2007.01.029" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.actaastro.2007.01.029</a></pub-id>.
  24. Zhang, Z.; Deng, X.; Zhang, W.; Chen, K.; Su, Y.; Gao, C.; Gong, D.; Zhu, L.; Cai, J. Manipulation of Magnetic Beads for Actively Capturing Vibrio Parahaemolyticus and Nucleic Acid Based on Microfluidic System. Biomicrofluidics 2024, 18, 034104, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1063/5.0193442" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1063/5.0193442</a></pub-id>.
  25. Li, Y.; Liu, S.; Wang, Y.; Wang, Y.; Li, S.; He, N.; Deng, Y.; Chen, Z. Research on a Magnetic Separation-Based Rapid Nucleic Acid Extraction System and Its Detection Applications. Biosensors 2023, 13, 903, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.3390/bios13100903" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/bios13100903</a></pub-id>.
  26. Yang, K.; Zhou, J.; Zhao, J.; Liu, L.; Hua, C.; Hong, C.; Wang, M.; Hu, A.; Zhang, W.; Cui, J.; et al. Mobile Lab: A Novel Pathogen Assay Using the Nucleic Acid Automatic Assay System Assisted by a Self-Contained Microfluidic Cassette and Chitosan Decorating Magnetic Particles. Sensors and Actuators B: Chemical 2024, 419, 136413, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.snb.2024.136413" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.snb.2024.136413</a></pub-id>.
  27. Seong, H.; Park, J.; Bae, M.; Shin, S. Rapid and Efficient Extraction of Cell-Free DNA Using Homobifunctional Crosslinkers. Biomedicines 2022, 10, 1883, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.3390/biomedicines10081883" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/biomedicines10081883</a></pub-id>.
  28. Pearlman, S.I.; Leelawong, M.; Richardson, K.A.; Adams, N.M.; Russ, P.K.; Pask, M.E.; Wolfe, A.E.; Wessely, C.; Haselton, F.R. Low-Resource Nucleic Acid Extraction Method Enabled by High-Gradient Magnetic Separation. ACS Appl. Mater. Interfaces 2020, 12, 12457–12467, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1021/acsami.9b21564" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1021/acsami.9b21564</a></pub-id>.
  29. Sciuto, E.L.; Petralia, S.; Calabrese, G.; Conoci, S. An Integrated Biosensor Platform for Extraction and Detection of Nucleic Acids., doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1002/bit.27290" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/bit.27290</a></pub-id>.
  30. Li, S.; Wan, C.; Xiao, Y.; Liu, C.; Zhao, X.; Zhang, Y.; Yuan, H.; Wu, L.; Qian, C.; Li, Y.; et al. Multiple On-Line Active Valves Based Centrifugal Microfluidics for Dynamic Solid-Phase Enrichment and Purification of Viral Nucleic Acid. Lab Chip 2024, 24, 3158–3168, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1039/D4LC00074A" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1039/D4LC00074A</a></pub-id>.
  31. Zhao, X.; Huang, Y.; Li, X.; Yang, W.; Lv, Y.; Sun, W.; Huang, J.; Mi, S. Full Integration of Nucleic Acid Extraction and Detection into a Centrifugal Microfluidic Chip Employing Chitosan-Modified Microspheres. Talanta 2022, 250, 123711, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.talanta.2022.123711" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.talanta.2022.123711</a></pub-id>.
  32. Schneider, L.; Cui, F.; Tripathi, A. Isolation of Target DNA Using Synergistic Magnetic Bead Transport and Electrokinetic Flow. Biomicrofluidics 2021, 15, 024104, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1063/5.0045307" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1063/5.0045307</a></pub-id>.
  33. Yamaguchi, A.; Matsuda, K.; Uehara, M.; Honda, T.; Saito, Y. A Novel Automated Device for Rapid Nucleic Acid Extraction Utilizing a Zigzag Motion of Magnetic Silica Beads. Analytica Chimica Acta 2016, 906, 1–6, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.aca.2015.10.011" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.aca.2015.10.011</a></pub-id>.
  34. Huang, J.; Xia, L.; Xiao, X.; Li, G. A Recyclable PDMS Microfluidic Surface-Enhanced Raman Scattering Cu/AgNP Chip for the Analysis of Sulfadiazine in Aquatic Products. New J. Chem. 2024, 48, 11457–11464, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1039/D4NJ01825G" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1039/D4NJ01825G</a></pub-id>.
  35. Lyu, C.; Jiang, Y.; Dai, Z.; Xu, X.; Cai, Y.; Liang, B.; Zhou, C.; Ye, X.; Wang, J. Optimizing Magnetic Separation and Cleaning Module in Fully Automated Chemiluminescence Immunoassay Analyzer Using a Special Arrangement of Spliced Magnets and a Three-Stage Magnetic Bead Collection Method. Magnetochemistry 2024, 10, 75, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.3390/magnetochemistry10100075" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/magnetochemistry10100075</a></pub-id>.
  36. Nisar, N.; Shah, R.; Zada, F.; Khan, B.; Aziz, S.; Rehman, N.; Soonmin, H.; Ahmad, N.; Khan, M.; Hanzala Civil Engineering Journal Novel Ni/ZnO Nanocomposites for the Effective Photocatalytic Degradation of Malachite Green Dye. 2024, 10, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.28991/CEJ-2024-010-08-011" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.28991/CEJ-2024-010-08-011</a></pub-id>.
  37. Zhang, J.; Su, X.; Xu, J.; Wang, J.; Zeng, J.; Li, C.; Chen, W.; Li, T.; Min, X.; Zhang, D.; et al. A Point of Care Platform Based on Microfluidic Chip for Nucleic Acid Extraction in Less than 1 Minute. Biomicrofluidics 2019, 13, 034102, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1063/1.5088552" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1063/1.5088552</a></pub-id>.
  38. Ji, T.; Liu, Z.; Wang, G.; Guo, X.; Akbar Khan, S.; Lai, C.; Chen, H.; Huang, S.; Xia, S.; Chen, B.; et al. Detection of COVID-19: A Review of the Current Literature and Future Perspectives. Biosens Bioelectron 2020, 166, 112455, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.bios.2020.112455" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.bios.2020.112455</a></pub-id>.
  39. Saiki, R.K.; Gelfand, D.H.; Stoffel, S.; Scharf, S.J.; Higuchi, R.; Horn, G.T.; Mullis, K.B.; Erlich, H.A. Primer-Directed Enzymatic Amplification of DNA with a Thermostable DNA Polymerase. Science 1988, 239, 487–491, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1126/science.2448875" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1126/science.2448875</a></pub-id>.
  40. Boehme, C.C.; Nabeta, P.; Hillemann, D.; Nicol, M.P.; Shenai, S.; Krapp, F.; Allen, J.; Tahirli, R.; Blakemore, R.; Rustomjee, R.; et al. Rapid Molecular Detection of Tuberculosis and Rifampin Resistance. N Engl J Med 2010, 363, 1005–1015, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1056/NEJMoa0907847" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1056/NEJMoa0907847</a></pub-id>.
  41. Chen, S.; Sun, Y.; Fan, F.; Chen, S.; Zhang, Y.; Zhang, Y.; Meng, X.; Lin, J.-M. Present Status of Microfluidic PCR Chip in Nucleic Acid Detection and Future Perspective. TrAC Trends in Analytical Chemistry 2022, 157, 116737, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.trac.2022.116737" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.trac.2022.116737</a></pub-id>.
  42. Ling, W.; Zhou, W.; Cui, J.; Shen, Z.; Wei, Q.; Chu, X. Experimental Study on the Heating/Cooling and Temperature Uniformity Performance of the Microchannel Temperature Control Device for Nucleic Acid PCR Amplification Reaction of COVID-19. Applied Thermal Engineering 2023, 226, 120342, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.applthermaleng.2023.120342" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.applthermaleng.2023.120342</a></pub-id>.
  43. İnce, G.T.; Yüksekkaya, M.; Haberal, O.E. Micro-Polymerase Chain Reaction for Point-of-Care Detection and beyond: A Review Microfluidics and Nanofluidics. Microfluid Nanofluid 2023, 27, 68, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1007/s10404-023-02677-w" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s10404-023-02677-w</a></pub-id>.
  44. Huang, S.; An, Y.; Xi, B.; Gong, X.; Chen, Z.; Shao, S.; Ge, S.; Zhang, J.; Zhang, D.; Xia, N. Ultra-Fast, Sensitive and Low-Cost Real-Time PCR System for Nucleic Acid Detection. Lab Chip 2023, 23, 2611–2622, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1039/D3LC00174A" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1039/D3LC00174A</a></pub-id>.
  45. Qiu, X.; Ge, S.; Gao, P.; Li, K.; Yang, S.; Zhang, S.; Ye, X.; Xia, N.; Qian, S. A Smartphone-Based Point-of-Care Diagnosis of H1N1 with Microfluidic Convection PCR. Microsyst Technol 2017, 23, 2951–2956, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1007/s00542-016-2979-z" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s00542-016-2979-z</a></pub-id>.
  46. Li, Y.; Zhang, C.; Xing, D. Integrated Microfluidic Reverse Transcription-Polymerase Chain Reaction for Rapid Detection of Food- or Waterborne Pathogenic Rotavirus. Analytical Biochemistry 2011, 415, 87–96, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.ab.2011.04.026" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ab.2011.04.026</a></pub-id>.
  47. Pham, Q.N.; Trinh, K.T.L.; Tran, N.K.S.; Park, T.-S.; Lee, N.Y. Fabrication of 3D Continuous-Flow Reverse-Transcription Polymerase Chain Reaction Microdevice Integrated with on-Chip Fluorescence Detection for Semi-Quantitative Assessment of Gene Expression. Analyst 2018, 143, 5692–5701, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1039/c8an01739e" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1039/c8an01739e</a></pub-id>.
  48. You, D.J.; Tran, P.L.; Kwon, H.-J.; Patel, D.; Yoon, J.-Y. Very Quick Reverse Transcription Polymerase Chain Reaction for Detecting 2009 H1N1 Influenza A Using Wire-Guide Droplet Manipulationst. Faraday Discuss 2011, 149, 159–170; discussion 227–245, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1039/c005326k" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1039/c005326k</a></pub-id>.
  49. Ouyang, Y.; Duarte, G.R.M.; Poe, B.L.; Riehl, P.S.; dos Santos, F.M.; Martin-Didonet, C.C.G.; Carrilho, E.; Landers, J.P. A Disposable Laser Print-Cut-Laminate Polyester Microchip for Multiplexed PCR via Infra-Red-Mediated Thermal Control. Analytica Chimica Acta 2015, 901, 59–67, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.aca.2015.09.042" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.aca.2015.09.042</a></pub-id>.
  50. Shaw, K.J.; Docker, P.T.; Yelland, J.V.; Dyer, C.E.; Greenman, J.; Greenway, G.M.; Haswell, S.J. Rapid PCR Amplification Using a Microfluidic Device with Integrated Microwave Heating and Air Impingement Cooling. Lab Chip 2010, 10, 1725–1728, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1039/C000357N" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1039/C000357N</a></pub-id>.
  51. Chen, X.; Song, L.; Assadsangabi, B.; Fang, J.; Mohamed Ali, M.S.; Takahata, K. Wirelessly Addressable Heater Array for Centrifugal Microfluidics and Escherichia Coli Sterilization. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); July 2013; pp. 5505–5508.
  52. Fernández-Carballo, B.L.; McBeth, C.; McGuiness, I.; Kalashnikov, M.; Baum, C.; Borrós, S.; Sharon, A.; Sauer-Budge, A.F. Continuous-Flow, Microfluidic, qRT-PCR System for RNA Virus Detection. Anal Bioanal Chem 2018, 410, 33–43, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1007/s00216-017-0689-8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s00216-017-0689-8</a></pub-id>.
  53. Qiu, X.; Shu, J.I.; Baysal, O.; Wu, J.; Qian, S.; Ge, S.; Li, K.; Ye, X.; Xia, N.; Yu, D. Real-Time Capillary Convective PCR Based on Horizontal Thermal Convection. Microfluid Nanofluid 2019, 23, 39, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1007/s10404-019-2207-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s10404-019-2207-0</a></pub-id>.
  54. Trinh, K.T.L.; Lee, N.Y. A Portable Microreactor with Minimal Accessories for Polymerase Chain Reaction: Application to the Determination of Foodborne Pathogens. Microchim Acta 2017, 184, 4225–4233, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1007/s00604-017-2451-5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s00604-017-2451-5</a></pub-id>.
  55. Nouwairi, R.L.; Cunha, L.L.; Turiello, R.; Scott, O.; Hickey, J.; Thomson, S.; Knowles, S.; Chapman, J.D.; Landers, J.P. Ultra-Rapid Real-Time Microfluidic RT-PCR Instrument for Nucleic Acid Analysis. Lab Chip 2022, 22, 3424–3435, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1039/d2lc00495j" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1039/d2lc00495j</a></pub-id>.
  56. An, Y.-Q.; Huang, S.-L.; Xi, B.-C.; Gong, X.-L.; Ji, J.-H.; Hu, Y.; Ding, Y.-J.; Zhang, D.-X.; Ge, S.-X.; Zhang, J.; et al. Ultrafast Microfluidic PCR Thermocycler for Nucleic Acid Amplification. Micromachines (Basel) 2023, 14, 658, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.3390/mi14030658" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/mi14030658</a></pub-id>.
  57. Trauba, J.M.; Wittwer, C.T. Microfluidic Extreme PCR: &lt;1 Minute DNA Amplification in a Thin Film Disposable. Journal of Biomedical Science and Engineering 2017, 10, 219–231, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.4236/jbise.2017.105017" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.4236/jbise.2017.105017</a></pub-id>.
  58. Yeom, D.; Kim, J.; Kim, S.; Ahn, S.; Choi, J.; Kim, Y.; Koo, C. A Thermocycler Using a Chip Resistor Heater and a Glass Microchip for a Portable and Rapid Microchip-Based PCR Device. Micromachines (Basel) 2022, 13, 339, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.3390/mi13020339" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/mi13020339</a></pub-id>.
  59. Oyewola, O.M.; Awonusi, A.A.; Ismail, O.S. Performance Optimization of Step-Like Divergence Plenum Air-Cooled Li-Ion Battery Thermal Management System Using Variable-Step-Height Configuration. Emerging Science Journal 2024, 8, 795–814, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.28991/ESJ-2024-08-03-01" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.28991/ESJ-2024-08-03-01</a></pub-id>.
  60. Salman, A.; Carney, H.; Bateson, S.; Ali, Z. Shunting Microfluidic PCR Device for Rapid Bacterial Detection. Talanta 2020, 207, 120303, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.talanta.2019.120303" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.talanta.2019.120303</a></pub-id>.
  61. Petralia, Salvatore &amp; Castagna, Maria Eloisa &amp; Spata, Massimo &amp; Amore, Maria &amp; Conoci, Sabrina. (2016). A Point of Care Real Time PCR Platform Based on Silicon Technology. Biosensors Journal. 5. doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.4172/2090-4967.1000136" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.4172/2090-4967.1000136</a></pub-id>.
  62. Lim, J.; Jeong, S.; Kim, M.; Lee, J.-H. Battery-Operated Portable PCR System with Enhanced Stability of Pt RTD. PLOS ONE 2019, 14, e0218571, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1371/journal.pone.0218571" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1371/journal.pone.0218571</a></pub-id>.
  63. Yang, Y.; Chen, Y.; Tang, H.; Zong, N.; Jiang, X. Microfluidics for Biomedical Analysis. Small Methods 2020, 4, 1900451, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1002/smtd.201900451" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/smtd.201900451</a></pub-id>.
  64. Si, H.; Xu, G.; Jing, F.; Sun, P.; Zhao, D.; Wu, D. A Multi-Volume Microfluidic Device with No Reagent Loss for Low-Cost Digital PCR Application. Sensors and Actuators B: Chemical 2020, 318, 128197, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.snb.2020.128197" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.snb.2020.128197</a></pub-id>.
  65. Effect of Gadolinium Doping on the Structure of Ce1-xGdxO2-x/2 Solid Solutions Prepared by Ionic Gelation Approach | Ilcheva | Emerging Science Journal Available online: <a href="https://www.ijournalse.org/index.php/ESJ/article/view/2504" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://www.ijournalse.org/index.php/ESJ/article/view/2504</a> (accessed on 6 December 2024).
  66. Pumford, E.A.; Lu, J.; Spaczai, I.; Prasetyo, M.E.; Zheng, E.M.; Zhang, H.; Kamei, D.T. Developments in Integrating Nucleic Acid Isothermal Amplification and Detection Systems for Point-of-Care Diagnostics. Biosens Bioelectron 2020, 170, 112674, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.bios.2020.112674" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.bios.2020.112674</a></pub-id>.
  67. Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N., &amp; Hase, T. (2000). Loop-mediated isothermal amplification of DNA. Nucleic acids research, 28(12), E63. <a href="https://doi.org/10.1093/nar/28.12.e63" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1093/nar/28.12.e63</a>.
  68. Rabe, B. A., &amp; Cepko, C. (2020). SARSCoV-2 detection using isothermal amplification and a rapid, inexpensive protocol for sample inactivation and purification. Proceedings of the National Academy of Sciences of the United States of America, 117(39), 24450–24458. <a href="https://doi.org/10.1073/pnas.2011221117" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1073/pnas.2011221117</a>.
  69. Suea-Ngam, A.; Bezinge, L.; Mateescu, B.; Howes, P.D.; deMello, A.J.; Richards, D.A. Enzyme-Assisted Nucleic Acid Detection for Infectious Disease Diagnostics: Moving toward the Point-of-Care. ACS Sens 2020, 5, 2701–2723, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1021/acssensors.0c01488" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1021/acssensors.0c01488</a></pub-id>.
  70. Jiang, L.; Lan, X.; Ren, L.; Yang, M.; Wei, B.; Wang, Y. Design of a Digital LAMP Detection Platform Based on Droplet Microfluidic Technology. Micromachines (Basel) 2023, 14, 1077, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.3390/mi14051077" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/mi14051077</a></pub-id>.
  71. Xiao, B.; Zhao, R.; Wang, N.; Zhang, J.; Sun, X.; Huang, F.; Chen, A. Integrating Microneedle DNA Extraction to Hand-Held Microfluidic Colorimetric LAMP Chip System for Meat Adulteration Detection. Food Chem 2023, 411, 135508, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.foodchem.2023.135508" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.foodchem.2023.135508</a></pub-id>.
  72. El-Tholoth, M.; Bai, H.; Mauk, M.G.; Saif, L.; Bau, H.H. A Portable, 3D Printed, Microfluidic Device for Multiplexed, Real Time, Molecular Detection of the Porcine Epidemic Diarrhea Virus, Transmissible Gastroenteritis Virus, and Porcine Deltacoronavirus at the Point of Need. Lab Chip 2021, 21, 1118–1130, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1039/d0lc01229g" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1039/d0lc01229g</a></pub-id>.
  73. Loo, J.; Kwok, H.C.; Leung, C.C.H.; Wu, S.Y.; Law, I.L.G.; Cheung, Y.K.; Cheung, Y.Y.; Chin, M.L.; Kwan, P.; Hui, M.; et al. Sample-to-Answer on Molecular Diagnosis of Bacterial Infection Using Integrated Lab-on-a-Disc. Biosens Bioelectron 2017, 93, 212–219, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.bios.2016.09.001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.bios.2016.09.001</a></pub-id>.
  74. Liu, D.; Zhu, Y.; Li, N.; Lu, Y.; Cheng, J.; Xu, Y. A Portable Microfluidic Analyzer for Integrated Bacterial Detection Using Visible Loop-Mediated Amplification. Sensors and Actuators B: Chemical 2020, 310, 127834, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.snb.2020.127834" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.snb.2020.127834</a></pub-id>.
  75. Gansen, A.; Herrick, A.M.; Dimov, I.K.; Lee, L.P.; Chiu, D.T. Digital LAMP in a Sample Self-Digitization (SD) Chip. Lab Chip 2012, 12, 2247–2254, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1039/C2LC21247A" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1039/C2LC21247A</a></pub-id>.
  76. Rane, T.D.; Chen, L.; Zec, H.C.; Wang, T.-H. Microfluidic Continuous Flow Digital Loop-Mediated Isothermal Amplification (LAMP). Lab Chip 2015, 15, 776–782, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1039/C4LC01158A" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1039/C4LC01158A</a></pub-id>.
  77. Xie, M.; Chen, T.; Cai, Z.; Lei, B.; Dong, C. A Digital Microfluidic Platform Coupled with Colorimetric Loop-Mediated Isothermal Amplification for on-Site Visual Diagnosis of Multiple Diseases. Lab Chip 2023, 23, 2778–2788, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1039/d2lc01156e" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1039/d2lc01156e</a></pub-id>.
  78. Daposang, E.S.; Hasanah, F.; Silaban, D. PROFILE OF PULMONARY AND EXTRA PULMONARY TUBERCULOSIS USE GENEXPER AT THE PIRNGADI HOSPITAL MEDAN. BIOLINK (Jurnal Biologi Lingkungan Industri Kesehatan) 2021, 8, 44–52, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.31289/biolink.v8i1.4638" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.31289/biolink.v8i1.4638</a></pub-id>.
  79. Smithgall, M.C.; Scherberkova, I.; Whittier, S.; Green, D.A. Comparison of Cepheid Xpert Xpress and Abbott ID Now to Roche Cobas for the Rapid Detection of SARS-CoV-2. Journal of Clinical Virology 2020, 128, 104428, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.jcv.2020.104428" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jcv.2020.104428</a></pub-id>.
  80. Wei, Y.-J.; Zhao, Y.-N.; Zhang, X.; Wei, X.; Chen, M.-L.; Chen, X.-W. Biochemical Analysis Based on Optical Detection Integrated Microfluidic Chip. TrAC Trends in Analytical Chemistry 2023, 158, 116865, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.trac.2022.116865" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.trac.2022.116865</a></pub-id>.
  81. Zhang, L.; Huang, B.; Jin, J.; Li, Y.; Gu, N. Advances in Nanoprobes-Based Immunoassays. BMEMat 2024, 2, e12057, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1002/bmm2.12057" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/bmm2.12057</a></pub-id>.
  82. Xu, J.; Tang, Q.; Zhang, R.; Chen, H.; Khoo, B.L.; Zhang, X.; Chen, Y.; Yan, H.; Li, J.; Shao, H.; et al. Sensitive Detection of microRNAs Using Polyadenine-Mediated Fluorescent Spherical Nucleic Acids and a Microfluidic Electrokinetic Signal Amplification Chip. J Pharm Anal 2022, 12, 808–813, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.jpha.2022.05.009" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jpha.2022.05.009</a></pub-id>.
  83. Yao, Y.; Zhao, N.; Jing, W.; Liu, Q.; Lu, H.; Zhao, W.; Zhao, W.; Yuan, Z.; Xia, H.; Sui, G. A Self-Powered Rapid Loading Microfluidic Chip for Vector-Borne Viruses Detection Using RT-LAMP. Sensors and Actuators B: Chemical 2021, 333, 129521, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.snb.2021.129521" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.snb.2021.129521</a></pub-id>.
  84. Jiang, K.; Wu, J.; Kim, J.-E.; An, S.; Nam, J.-M.; Peng, Y.-K.; Lee, J.-H. Plasmonic Cross-Linking Colorimetric PCR for Simple and Sensitive Nucleic Acid Detection. Nano Lett. 2023, 23, 3897–3903, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1021/acs.nanolett.3c00533" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1021/acs.nanolett.3c00533</a></pub-id>.
  85. Fu, L.; Qian, Y.; Zhou, J.; Zheng, L.; Wang, Y. Fluorescence-Based Quantitative Platform for Ultrasensitive Food Allergen Detection: From Immunoassays to DNA Sensors. Comprehensive Reviews in Food Science and Food Safety 2020, 19, 3343–3364, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1111/1541-4337.12641" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/1541-4337.12641</a></pub-id>.
  86. Surucu, O.; Öztürk, E.; Kuralay, F. Nucleic Acid Integrated Technologies for Electrochemical Point-of-Care Diagnostics: A Comprehensive Review. Electroanalysis 2022, 34, 148–160, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1002/elan.202100309" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/elan.202100309</a></pub-id>.
  87. Zhou, P.; He, H.; Ma, H.; Wang, S.; Hu, S. A Review of Optical Imaging Technologies for Microfluidics. Micromachines 2022, 13, 274, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.3390/mi13020274" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/mi13020274</a></pub-id>.
  88. Katzmeier, F.; Aufinger, L.; Dupin, A.; Quintero, J.; Lenz, M.; Bauer, L.; Klumpe, S.; Sherpa, D.; Dürr, B.; Honemann, M.; et al. A Low-Cost Fluorescence Reader for in Vitro Transcription and Nucleic Acid Detection with Cas13a. PLoS One 2019, 14, e0220091, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1371/journal.pone.0220091" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1371/journal.pone.0220091</a></pub-id>.
  89. Spibey, C.A.; Jackson, P.; Herick, K. A Unique Charge-Coupled Device/Xenon Arc Lamp Based Imaging System for the Accurate Detection and Quantitation of Multicolour Fluorescence. ELECTROPHORESIS 2001, 22, 829–836, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1002/1522-2683()22:5&lt" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/1522-2683()22:5&lt</a>;829::AID-ELPS829&gt;3.0.CO;2-U</pub-id>.
  90. Chen, P.; Pan, D.; Mao, Z. Fluorescence Measured Using a Field-Portable Laser Fluorometer as a Proxy for CDOM Absorption. Estuarine, Coastal and Shelf Science 2014, 146, 33–41, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.ecss.2014.05.010" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ecss.2014.05.010</a></pub-id>.
  91. Velpula, R.T.; Jain, B.; Philip, M.R.; Nguyen, H.D.; Wang, R.; Nguyen, H.P.T. Epitaxial Growth and Characterization of AlInN-Based Core-Shell Nanowire Light Emitting Diodes Operating in the Ultraviolet Spectrum. Sci Rep 2020, 10, 2547, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1038/s41598-020-59442-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1038/s41598-020-59442-0</a></pub-id>.
  92. Baeg, K.-J.; Binda, M.; Natali, D.; Caironi, M.; Noh, Y.-Y. Organic Light Detectors: Photodiodes and Phototransistors. Adv Mater 2013, 25, 4267–4295, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1002/adma.201204979" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/adma.201204979</a></pub-id>.
  93. Fang, Y.; Wang, Y.; Su, X.; Liu, H.; Chen, H.; Chen, Z.; Jin, L.; He, N. A Miniaturized and Integrated Dual-Channel Fluorescence Module for Multiplex Real-Time PCR in the Portable Nucleic Acid Detection System. Front. Bioeng. Biotechnol. 2022, 10, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.3389/fbioe.2022.996456" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3389/fbioe.2022.996456</a></pub-id>.
  94. Wang, Y.; Fang, Y.; Liu, H.; Su, X.; Chen, Z.; Li, S.; He, N. A Highly Integrated and Diminutive Fluorescence Detector for Point-of-Care Testing: Dual Negative Feedback Light-Emitting Diode (LED) Drive and Photoelectric Processing Circuits Design and Implementation. Biosensors (Basel) 2022, 12, 764, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.3390/bios12090764" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/bios12090764</a></pub-id>.
  95. Zhu, Y.; Tong, X.; Wei, Q.; Cai, G.; Cao, Y.; Tong, C.; Shi, S.; Wang, F. 3D Origami Paper-Based Ratiometric Fluorescent Microfluidic Device for Visual Point-of-Care Detection of Alkaline Phosphatase and Butyrylcholinesterase. Biosensors and Bioelectronics 2022, 196, 113691, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.bios.2021.113691" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.bios.2021.113691</a></pub-id>.
  96. Mumtaz, Z.; Rashid, Z.; Ali, A.; Arif, A.; Ameen, F.; AlTami, M.S.; Yousaf, M.Z. Prospects of Microfluidic Technology in Nucleic Acid Detection Approaches. Biosensors 2023, 13, 584, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.3390/bios13060584" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/bios13060584</a></pub-id>.
  97. Walker, F.M.; Hsieh, K. Advances in Directly Amplifying Nucleic Acids from Complex Samples. Biosensors 2019, 9, 117, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.3390/bios9040117" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/bios9040117</a></pub-id>.
  98. Li, Z.; Bai, Y.; You, M.; Hu, J.; Yao, C.; Cao, L.; Xu, F. Fully Integrated Microfluidic Devices for Qualitative, Quantitative and Digital Nucleic Acids Testing at Point of Care. Biosensors and Bioelectronics 2021, 177, 112952, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.bios.2020.112952" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.bios.2020.112952</a></pub-id>.
  99. Taylor, C.D.; Gully, B.; Sánchez, A.N.; Rode, E.; Agarwal, A.S. Towards Materials Sustainability through Materials Stewardship. Sustainability 2016, 8, 1001, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.3390/su8101001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/su8101001</a></pub-id>.
  100. Human – Computer Interface Design Can Reduce Misperceptions of Feedback - Howie - 2000 - System Dynamics Review - Wiley Online Library Available online: <a href="https://onlinelibrary.wiley.com/doi/10.1002/1099-1727(200023)16:3%3C151::AIDSDR191%3E3.0.CO;2-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://onlinelibrary.wiley.com/doi/10.1002/1099-1727(200023)16:3%3C151::AIDSDR191%3E3.0.CO;2-0</a> (accessed on 6 December 2024).
  101. POCT Analysts’ Perspective: Practices and Wants for Improvement | The Journal of Applied Laborator y Medicine | Oxford Academic Available online: <a href="https://academic.oup.com/jalm/article/5/3/480/5827435?login=false" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://academic.oup.com/jalm/article/5/3/480/5827435?login=false</a> (accessed on 6 December 2024).
  102. Point-of-Care Testing (POCT) and IT Security Concepts Available online: <a href="https://www.degruyter.com/document/doi/10.1515/labmed-2019-0199/html" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://www.degruyter.com/document/doi/10.1515/labmed-2019-0199/html</a> (accessed on 6 December 2024).
  103. Jinjin L.U.; Yongxin S.; Yuan T.; Tong H.O.U. The Flow Pump Control System Design Applied to Microfluidic Experimental Platform. sykxyjs 2023, 21, 50–56, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.12179/1672-4550.20220641" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.12179/1672-4550.20220641</a></pub-id>.
  104. Liu, D.; Wang, Y.; Li, X.; Li, M.; Wu, Q.; Song, Y.; Zhu, Z.; Yang, C. Integrated Microfluidic Devices for in Vitro Diagnostics at Point of Care., doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1002/agt2.184" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/agt2.184</a></pub-id>.
  105. Xing, G.; Ai, J.; Wang, N.; Pu, Q. Recent Progress of Smartphone-Assisted Microfluidic Sensors for Point of Care Testing. TrAC Trends in Analytical Chemistry 2022, 157, 116792, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.trac.2022.116792" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.trac.2022.116792</a></pub-id>.
  106. Zhou, D.; Zhang, Z.; Li, Y.; Ma, T.; He, H.; Li, H. Intelligent Textiles Make Life Wirelessly Energetic by Coupling Radiation Energy and Human. BMEMat 2024, 2, e12090, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1002/bmm2.12090" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/bmm2.12090</a></pub-id>.
  107. Sachdeva, S.; Davis, R.W.; Saha, A.K. Microfluidic Point-of-Care Testing: Commercial Landscape and Future Directions. Front. Bioeng. Biotechnol. 2021, 8, doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.3389/fbioe.2020.602659" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3389/fbioe.2020.602659</a></pub-id>.
  108. Wiencek, J.; Nichols, J. Issues in the Practical Implementation of POCT: Overcoming Challenges. Expert Review of Molecular Diagnostics 2016.
Language: English
Submitted on: Oct 8, 2024
Published on: Mar 27, 2025
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2025 Shuo Wu, Jianxin Cheng, Xiaohua Cao, Jingdong Bo, Shilun Feng, Chuanjin Cui, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.