Dynkin, A.A. Science of foresight: how to succeed in strategic forecasting and planning/ A.A. Dynkin, V.D. Milovidov// Problems of Forecasting. - 2023. - No 3(198). - C. 6–23. DOI: <pub-id pub-id-type="doi"><a href="https://doi.org/10.47711/0868-6351-198-6-23." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.47711/0868-6351-198-6-23.</a></pub-id>
Modeling of development of the industrial complex of the Southern Federal District/ Makarenya, T.A. [et al.] - Ufa: Scientific and Publishing Center “Aeterna”, 2023. - 127 c.
Blokhin, A.A. Global challenges for the system of strategic planning in Russia/ A.A. Blokhin, D.B. Kuvalin. Problems of forecasting. - 2023. - No 3(198). C. 24–41. DOI: <pub-id pub-id-type="doi"><a href="https://doi.org/10.47711/0868-6351-198-24-41" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.47711/0868-6351-198-24-41</a></pub-id>. (In Russia).
Kasparyants, D. Analysis of the artificial intelligence market in 2021. Scientific and Technical Center of FSUE “Main Radio Frequency Center”. 30.11.2021. URL: <a href="https://clck.ru/35cyFZ/" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://clck.ru/35cyFZ/</a>.
Official website of the federal service of state statistics. Mode of access: <a href="https://rosstat.gov.ru/" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://rosstat.gov.ru/</a>
Alvin C. Rencher. Methods of Multivariate Analysis. Wiley Series in Probability and Statistics/ Alvin C. Rencher, Christensen, William F.// Multivariate regression. Section 10.1. Introduction. - 2012 - Chapter 10, vol. 709.
Chaudhary, K., Machine learning-based mathematical modelling for prediction of social media consumer behavior using big data analytics/ K. Chaudhary, M. Alam, A.S. Mabrook, A. Gumaei// Journal of Big Data. 8 (1) – 73 – 2021 doi:<pub-id pub-id-type="doi"><a href="https://doi.org/10.1186/s40537-021-00466-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1186/s40537-021-00466-2</a></pub-id>. ISSN 2196-1115.
Hastie, T. The elements of statistical learning: data mining, inference, and prediction/ T. Hastie; New York: Springer. 2001. ISBN 0-387-95284-5. OCLC 46809224.
Etuk, Ette. An Additive SARIMA Model for Daily Exchange Rates of the Malaysian Ringgit (MYR) and Nigerian Naira (NGN)/ Ette Etuk. International Journal of Empirical Finance. – 2014 - 2(4). - vol. 2. - pages 193–201.
Time series forecasting with multiple candidate models: selecting or combining/[and etc.]// Yu, L. Journal of Systems Science and Complexity. – 2005. -18(1). - pp.1–18.
Aksoy, N. Predictive models development using gradient boosting based methods for solar power plants/ N. Aksoy, I. Genc// Journal of Computational Science. Vol. 67. – 2023 - ISSN 1877-7503, DOI: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.jocs.2023.101958." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jocs.2023.101958.</a></pub-id>
Bach, F. R. Learning Graphical Models for Stationary Time Series/ F. R. Bach, M. I. Jordan// Ieee transactions on signal processing’s. - 2004. - VOL. 52. - NO. 8. - pages 2189–2199.
Seawright, J. The Case for Selecting Cases That Are Deviant or Extreme on the Independent Variable/J. Seawright, Sociological Methods & Research, 2016 45(3). - 493–525. DOI: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1177/0049124116643556" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1177/0049124116643556</a></pub-id>
Jin, M., Survey on Graph Neural Networks for Time Series: Forecasting, Classification, Imputation, and Anomaly Detection/ Jin M., Koh H.Y., Wen Q. A.// JOURNAL OF LATEX CLASS FILES. – 2021. - VOL. 14. - NO. 8. DOI: <pub-id pub-id-type="doi"><a href="https://doi.org/10.48550/arXiv.2307.03759." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.48550/arXiv.2307.03759.</a></pub-id>
Nguyen, N. Temporal Latent Auto-Encoder: A Method for Probabilistic Multivariate Time Series Forecasting/ N. Nguyen, Quanz B.// Proceedings of the AAAI. Conference on Artificial Intelligence. 35. -2021. - 9117–9125. <a href="https://doi.org/10.1609/aaai.v35i10.17101." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1609/aaai.v35i10.17101.</a>
Gorodnova, N.V. Modeling the development and implementation of systems of “weak” and “strong” artificial intelligence: socio-economic aspects/ N.V. Gorodnova// Voprosy innovatsionnymi ekonomiki.-2022. - T. 12. - No 1. - C. 123–140. DOI: <pub-id pub-id-type="doi"><a href="https://doi.org/10.18334/vinec.12.1.113717." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.18334/vinec.12.1.113717.</a></pub-id>
Fahle, S. Systematic review on machine learning (ML) methods for manufacturing processes–Identifying artificial intelligence (AI) methods for field application/S. Fahle, C. Prinz, B. Kuhlenkötter// Procedia CIRP. – 2020 - 93. pp. 413–418.
Apurvanand, S. Integration of Prophet Model and Convolution Neural Network on Wikipedia Trend Data/S. Apurvanand, J. Amudha// Journal of Computational and Theoretical Nanoscience. 17. – 2020. - pages 260–266. <pub-id pub-id-type="doi"><a href="https://doi.org/10.1166/jctn.2020.8660" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1166/jctn.2020.8660</a></pub-id>.
Predictive Maintenance of Machine Tool Systems Using Artificial Intelligence Techniques Applied to Machine Condition Data/ W.J. Lee [and etc.]// Procedia CIRP. – 2019. pp. 506–511.
He, S. Artificial intelligence and machine learning assisted drug delivery for effective treatment of infectious diseases/ S. He, L.G. Leanse, Y. Feng// Adv. Drug Deliv. – 2021 - Rev. 178. Article 113922.
Wasilow, S. Artificial intelligence, robotics, ethics, and the military: a Canadian perspective/ S. Wasilow, J.B. Thorpe// AI Magazine. – 2019. – 40.pp. 37–48.
Vorontsova, I.V. The definition of “artificial intelligence” and its semantic-procedural meaning in the judicial system of Russia and foreign countries/ I.V. Vorontsova, Y.A. Lukonina// Russian judge. - 2020. - No 10. - C. 41–45. Doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.18572/1812-3791-2020-10-41-45" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.18572/1812-3791-2020-10-41-45</a></pub-id>.