References
- Strielkowski, W., Kovaleva, O., & Efimtseva, T. (2022). Impacts of Digital Technologies for the Provision of Energy Market Services on the Safety of Residents and Consumers. Sustainability, 14(5), 2934.
- Ahmed, M. M., Qays, M. O., Abu-Siada, A., Muyeen, S. M., & Hossain, M. L. (2021). Cost-effective design of IoT-based smart household distribution system. Designs, 5(3), 55.
- Ullah, I., Fayaz, M., Aman, M., & Kim, D. (2022). Toward Autonomous Farming—A Novel Scheme Based on Learning to Prediction and Optimization for Smart Greenhouse Environment Control. IEEE Internet of Things Journal, 9(24), 25300–25323.
- Lee, D., Huang, H. Y., Lee, W. S., & Liu, Y. (2020). Artificial intelligence implementation framework development for building energy saving. International Journal of Energy Research, 44(14), 11908–11929.
- Xu, R., Jin, W., Hong, Y., & Kim, D. H. (2021). Intelligent Optimization Mechanism Based on an Objective Function for Efficient Home Appliances Control in an Embedded Edge Platform. Electronics, 10(12), 1460.
- Ma, Z. (2021, April). Development Status of Smart Home System in the Era of Internet of Everything. In Journal of Physics: Conference Series (Vol. 1881, No. 3, p. 032079). IOP Publishing.
- Abunadi, I., Abdullah Mengash, H., S. Alotaibi, S., Asiri, M. M., Ahmed Hamza, M., Zamani, A. S., … & Yaseen, I. (2022). Optimal multikey homomorphic encryption with steganography approach for multimedia security in Internet of everything environment. Applied Sciences, 12(8), 4026.
- Tyagi, A. K., & Nair, M. M. (2020). Internet of Everything (IoE) and Internet of Things (IoTs): Threat Analyses, Possible Opportunities for Future. Journal of Information Assurance & Security, 15(5).
- Khan, J. A., Westphal, C., & Ghamri-Doudane, Y. (2019). Information-centric fog network for incentivized collaborative caching in the Internet of everything. IEEE Communications Magazine, 57(7), 27–33.
- Singh, P., Nayyar, A., Kaur, A., & Ghosh, U. (2020). Blockchain and fog based architecture for internet of everything in smart cities. Future Internet, 12(4), 61.
- Chen, Y. Y., Lin, Y. H., Kung, C. C., Chung, M. H., & Yen, I. H. (2019). Design and implementation of cloud analytics-assisted smart power meters considering advanced artificial intelligence as edge analytics in demand-side management for smart homes. Sensors, 19(9), 2047.
- Singh, P. P., Khosla, P. K., & Mittal, M. (2019). Energy conservation in IoT-based smart home and its automation. Energy Conservation for IoT Devices: Concepts, Paradigms and Solutions, 155–177.
- Chen, Y. Y., Chen, M. H., Chang, C. M., Chang, F. S., & Lin, Y. H. (2021). A smart home energy management system using two-stage non-intrusive appliance load monitoring over fog-cloud analytics based on Tridium’s Niagara framework for residential demand-side management. Sensors, 21(8), 2883.
- Balabanova, I. S., Kostadinova, S. S., Markova, V. I., Sadinov, S. M., & Georgiev, G. I. (2021). Voice control and management in smart home system by artificial intelligence. In IOP Conference Series: Materials Science and Engineering (Vol. 1032, No. 1, p. 012007). IOP Publishing.
- Sodhro, A. H., Gurtov, A., Zahid, N., Pirbhulal, S., Wang, L., Rahman, M. M. U., … & Abbasi, Q. H. (2020). Toward convergence of AI and IoT for energy-efficient communication in smart homes. IEEE Internet of Things Journal, 8(12), 9664–9671.
- Sadikoglu-Asan, H. (2022). ‘User-Home relationship’ regarding user experience of smart home products. Intelligent Buildings International, 14(1), 114–130.
- Nasir, M., Muhammad, K., Ullah, A., Ahmad, J., Baik, S. W., & Sajjad, M. (2022). Enabling automation and edge intelligence over resource constraint IoT devices for smart home. Neurocomputing, 491, 494–506.
- Lin, Y. H. (2022). An advanced smart home energy management system considering identification of ADLs based on non-intrusive load monitoring. Electrical Engineering, 104(5), 3391–3409.
- Khan, M. A., Abbas, S., Rehman, A., Saeed, Y., Zeb, A., Uddin, M. I., … & Ali, A. (2020). A machine learning approach for blockchain-based smart home networks security. IEEE Network, 35(3), 223–229.
- Lee, S., & Choi, D. H. (2020). Energy management of smart home with home appliances, energy storage system and electric vehicle: A hierarchical deep reinforcement learning approach. Sensors, 20(7), 2157.
- Xu, X., Jia, Y., Xu, Y., Xu, Z., Chai, S., & Lai, C. S. (2020). A multi-agent reinforcement learning-based data-driven method for home energy management. IEEE Transactions on Smart Grid, 11(4), 3201–3211.
- Zhang, R., VE, S., & Jackson Samuel, R. D. (2020). Fuzzy efficient energy smart home management system for renewable energy resources. Sustainability, 12(8), 3115.
- Akbari-Dibavar, A., Nojavan, S., Mohammadi-Ivatloo, B., & Zare, K. (2020). Smart home energy management using hybrid robust-stochastic optimization. Computers & Industrial Engineering, 143, 106425.
- Chen, Y. Y., Chen, M. H., Chang, C. M., Chang, F. S., & Lin, Y. H. (2021). A smart home energy management system using two-stage non-intrusive appliance load monitoring over fog-cloud analytics based on Tridium’s Niagara framework for residential demand-side management. Sensors, 21(8), 2883.
- Chen, S. J., Chiu, W. Y., & Liu, W. J. (2021). User Preference-Based Demand Response for Smart Home Energy Management Using Multiobjective Reinforcement Learning. IEEE Access, 9, 161627–161637.
- Nakıp, M., Çopur, O., Biyik, E., & Güzeliş, C. (2023). Renewable energy management in smart home environment via forecast embedded scheduling based on Recurrent Trend Predictive Neural Network. Applied Energy, 340, 121014.
- Lu, R., Hong, S. H., & Yu, M. (2019). Demand response for home energy management using reinforcement learning and artificial neural network. IEEE Transactions on Smart Grid, 10(6), 6629–6639.
- Li, W., Logenthiran, T., Phan, V. T., & Woo, W. L. (2019). A novel smart energy theft system (SETS) for IoT-based smart home. IEEE Internet of Things Journal, 6(3), 5531–5539.
- Alilou, M., Tousi, B., & Shayeghi, H. (2020). Home energy management in a residential smart micro grid under stochastic penetration of solar panels and electric vehicles. Solar Energy, 212, 6–18.
- Rocha, H. R., Honorato, I. H., Fiorotti, R., Celeste, W. C., Silvestre, L. J., & Silva, J. A. (2021). An Artificial Intelligence based scheduling algorithm for demand-side energy management in Smart Homes. Applied Energy, 282, 116145.
- Franco, P., Martinez, J. M., Kim, Y. C., & Ahmed, M. A. (2021). IoT based approach for load monitoring and activity recognition in smart homes. IEEE Access, 9, 45325–45339.
- Kumar, P. M., Kamruzzaman, M. M., Alfurhood, B. S., Hossain, B., Nagarajan, H., & Sitaraman, S. R. (2024). Balanced Performance Merit On Wind and Solar Energy Contact With Clean Environment Enrichment. IEEE Journal of the Electron Devices Society.
- Sathyaprakash, P., Alagarsundaram, P., Devarajan, M. V., Alkhayyat, A., Poovendran, P., Rani, D. R., & Savitha, V. (2024). Medical Practitioner-Centric Heterogeneous Network Powered Efficient E-Healthcare Risk Prediction On Health Big Data. International Journal of Cooperative Information Systems.
https://www.kaggle.com/datasets/claytonmiller/open-smart-home-iotieqenergy-data .