Figure 1:
![A typical recorded PCG signal [1]. PCG, phonocardiogram.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/65ccbc5b3bc2d770e76b839c/j_ijssis-2024-0012_fig_001.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251206%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251206T020953Z&X-Amz-Expires=3600&X-Amz-Signature=75385b8fd3b124f6079b6a18ebfca4068cddf2189c48a2c4571b9526e960a895&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 1(a):
![Various phases engaged in PCG analysis [2]. PCG, phonocardiogram.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/65ccbc5b3bc2d770e76b839c/j_ijssis-2024-0012_fig_001a.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251206%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251206T020953Z&X-Amz-Expires=3600&X-Amz-Signature=2df92e635d1de98da529db03af4c238416435b0d579bed699c9ffd37c6f67bc9&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 1(b):
![Graphical representation of various steps involved in PCG signal classification [2, 14]. PCG, phonocardiogram.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/65ccbc5b3bc2d770e76b839c/j_ijssis-2024-0012_fig_001b.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251206%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251206T020953Z&X-Amz-Expires=3600&X-Amz-Signature=8d97cfdfebc5700d1280793b7dd8269d32ec4b03aac013265753fb05492d101f&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 2:

Figure 3(a):

Figure 3(b):

Figure 4:

Figure 5:

Figure 6:

Figure 7:

Figure 8:

Figure 9:

Figure 10(a):

Figure 10(b):

Figure 11:

Figure 12:

Figure 13:
![PCG analysis of different types of Heart Sounds [41, 39, 49]. PCG, phonocardiogram.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/65ccbc5b3bc2d770e76b839c/j_ijssis-2024-0012_fig_013.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251206%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251206T020953Z&X-Amz-Expires=3600&X-Amz-Signature=538f6f7cb72a264c74d3d04cba0fca63a3e02b01c0c241113cbfb635570ed147&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 14(a):
![Different coefficients in DWT [121, 122]. DWT, discrete wavelet transform.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/65ccbc5b3bc2d770e76b839c/j_ijssis-2024-0012_fig_014a.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251206%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251206T020953Z&X-Amz-Expires=3600&X-Amz-Signature=e8d0bea11041987717090f31e70d504821db23b65aebcac2963157160acdbaed&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 14(b):
![Flow chart of DWT [121, 122]. DWT, discrete wavelet transform.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/65ccbc5b3bc2d770e76b839c/j_ijssis-2024-0012_fig_014b.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251206%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251206T020953Z&X-Amz-Expires=3600&X-Amz-Signature=fac59271e9aa1780b265d5ea412f7b794034a11c76e425f478a0d0dfe637c2c1&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 15:
![Time-domain analysis of different Heart Sounds using wavelet transform [121, 122]. AR, aortic regurgitation; MS, mitral stenosis.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/65ccbc5b3bc2d770e76b839c/j_ijssis-2024-0012_fig_015.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251206%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251206T020953Z&X-Amz-Expires=3600&X-Amz-Signature=ed6e2ca9d7eccb208340123e802d527f5055874d96688dcb5393e5ba9dd6a8f7&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 16:

Figure 17(a,b):

Figure 17(c):

Figure 18:

Figure 19:

Figure 20:
![Convolution operation [131, 132].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/65ccbc5b3bc2d770e76b839c/j_ijssis-2024-0012_fig_020.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251206%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251206T020953Z&X-Amz-Expires=3600&X-Amz-Signature=9fbd9daafdc08e0516a72ff56d2c3cdbdd08c9ebcf5f2f2e36e643d44ef3ce5c&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 21:

Figure 22:
![Architecture of CNN model [137] for Heart Sound classification.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/65ccbc5b3bc2d770e76b839c/j_ijssis-2024-0012_fig_022.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251206%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251206T020953Z&X-Amz-Expires=3600&X-Amz-Signature=7efe0d8d8a6c850ce42813c98bf707c91ef5a41f54f22617959703b8ecc75018&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 23:
![PCG signal classification based on deep-learning models [138, 139]. PCG, phonocardiogram.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/65ccbc5b3bc2d770e76b839c/j_ijssis-2024-0012_fig_023.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251206%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251206T020953Z&X-Amz-Expires=3600&X-Amz-Signature=ca57b10ed311398a013d543d3c06c7fcbae66fec54ce52a040c06de154e081aa&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 24:
![Application of Heart Sound classification method adopted by a medical practitioner [140, 141].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/65ccbc5b3bc2d770e76b839c/j_ijssis-2024-0012_fig_024.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251206%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251206T020953Z&X-Amz-Expires=3600&X-Amz-Signature=3b7206d7de5f1369cc4f02e608d33cacbebf92a730ec10fcae03968eb15747de&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 25:
![Study of machine-learning vs. deep-learning methods for cardiac sound classification [148, 149, 150].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/65ccbc5b3bc2d770e76b839c/j_ijssis-2024-0012_fig_025.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251206%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251206T020953Z&X-Amz-Expires=3600&X-Amz-Signature=4b6959924a4c09f594f47db8ed93e4342b1e574f5a8e0ffe52ad84aabbe552a7&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 26:

Figure 27:

Figure 28:

Figure 29:

Figure 30:

Figure 31:

Figure 32:

Figure 33:

Figure 34:

Figure 35:
![Study of all CNN-based deep-learning models [142, 143].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/65ccbc5b3bc2d770e76b839c/j_ijssis-2024-0012_fig_035.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251206%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251206T020953Z&X-Amz-Expires=3600&X-Amz-Signature=25be4f50f8ada685651386594b1b3fdbbf2e5ed0d7f8e34494777820196965e5&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 36:
![Deep neural network based model architecture [144, 145].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/65ccbc5b3bc2d770e76b839c/j_ijssis-2024-0012_fig_036.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251206%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251206T020953Z&X-Amz-Expires=3600&X-Amz-Signature=655da030f598e20ec6f538c8a1c3cc229931d53fbe0cd24f4d279bc806544a0b&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 37:
![Architecture of a machine-learning algorithm like Random Forest [146, 147].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/65ccbc5b3bc2d770e76b839c/j_ijssis-2024-0012_fig_037.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251206%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251206T020953Z&X-Amz-Expires=3600&X-Amz-Signature=d899eae6fa87e6bb667a6d022c7bfb658a32daf15b6ab44d0afd25202faa68b7&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Heart Sound frequencies found in various abnormal Heart Sounds_
| Heart Sound | Lowest frequency (Hz) | Highest frequency (Hz) |
|---|---|---|
| First Heart Sound | 100 | 200 |
| Second Heart Sound | 50 | 250 |
| AR | 60 | 380 |
| PR | 90 | 150 |
| AS | 100 | 450 |
| PS | 150 | 400 |
| ASD | 60 | 200 |
| VSD | 50 | 180 |
| MR | 60 | 400 |
| TR | 90 | 400 |
| MS | 45 | 90 |
| TS | 90 | 400 |
| MVP | 45 | 90 |
| PDA | 90 | 140 |
| Flow murmur | 85 | 300 |
Comparison of training and validation performance metrics of CNN-based deep-learning models_
| System | Training loss | Training accuracy | Validation loss | Validation accuracy |
|---|---|---|---|---|
| LENET-5 | 0.4352 | 0.7089 | 0.4757 | 0.6799 |
| Alex Net | 0.3476 | 0.7379 | 0.3837 | 0.7199 |
| VGG16 | 0.2979 | 0.8102 | 0.3134 | 0.7978 |
| VGG19 | 0.2692 | 0.8709 | 0.2899 | 0.8469 |
| DENSENET121 | 0.2476 | 0.9087 | 0.2665 | 0.8876 |
| Squeeze Network | 0.2097 | 0.9265 | 0.2098 | 0.8906 |
| Mobile Network | 0.1576 | 0.9435 | 0.1376 | 0.9073 |
| Inception Network | 0.0472 | 0.9843 | 0.0654 | 0.9863 |
| Residual Network | 0.0432 | 0.9856 | 0.0533 | 0.9892 |
| Xception Network | 0.0320 | 0.9951 | 0.0325 | 0.9926 |
A study of PCG signal and their gap analysis reported in the literature
| Ref. | Author | Year | Methodological problem and research gap analysis | Features |
|---|---|---|---|---|
| [15] | Dewangan et al. | 2018 | Basic features used in the time domain only | Heart Sound analysis using the DWT method |
| [16] | Thomas Schanze | 2017 | Biomedical heart signal analysis not using latest machine-learning and deep-learning methods | Singular value decomposition |
| [17] | Othman and Khaleel | 2017 | Only time-domain analysis has been made | PCG signal analysis using Shannon Energy Envelop and DWT method |
| [18] | Martinek et al. | 2017 | PCG signal analysis applicable to fetal heart only, not real-time human subjects | Adaptive filtering based fetal heart rate monitoring |
| [19] | Abhijay Rao | 2017 | It is a survey paper only, not a research paper | Biomedical signal processing |
| [20] | Sh-Hussain et al. | 2016 | Frequency domain and statistical domain features need to be analyzed | Heart Sound monitoring system using wavelet transformation |
| [21] | Prasad and Kumar | 2015 | Real-time PCG signal analysis was not applied | Analysis of various DWT methods for feature extracted PCG signals |
| [22] | Pan et al. | 2015 | Real-time analysis not done | Categorization of PCG signals using multimodal features |
| [23] | Lubaib and Muneer | 2015 | More features need to be considered for this analysis | Using pattern recognition techniques |
| [24] | Roy et al. | 2014 | No proper experimentation has been done | A survey on classification of PCG signals |
| [25] | Mishra et al. | 2013 | It deals with PCG signal noise removal only, not classification | Denoising of Heart Sound signal using DWT |
| [26] | Zhao et al. | 2013 | PCG signal/Heart Sound biometric | Marginal Spectrum Analysis |
| [27] | Singh and Cheema | 2013 | Limited application of deep-learning algorithms has been used | Classification using Feature Extraction |
| [28] | Safara et al. | 2013 | Only time-domain analysis has been made | Multi-level basis selection of wavelet |
| [29] | Salleh et al. | 2012 | PCG signal analysis using Kalman filter, not using any standard deep-learning method | Heart Sound analysis: a Kalman filter-based approach |
| [30] | Misal and Sinha | 2012 | It deals with PCG signal noise removal only, not classification | Denoising of PCG signal using DWT |
| [31] | Kasturiwale | 2012 | Biomedical signal analysis, limited features. | Analysis using component extraction |
| [32] | McNames and Aboy | 2008 | It deals with the modeling part of PCG signals, not the classification and analysis | Techniques, statistical modeling of PCG signals |
| [33] | Ahmad et al. | 2009 | More feature extraction needs to be done for the PCG signal analysis | Classification of PCG signal using an Adaptive Fuzzy Inference System. |
| [34] | Debbal and Bereksi-Reguig | 2006 | Time-domain analysis in time domain only | PCG signal analysis using the CWT |
| [35] | Gupta et al. | 2005 | A real-time PCG signal analysis was not done | Segmentation and categorization of Heart Sound for analysis purpose. |
| [36] | Muthuswamy | 2004 | It is a survey paper only, not a research paper | Biomedical signal analysis |
Comparison of performance metrics in various CNN-based deep-learning models_
| System | Accuracy (%) | Precision (%) | Recall (%) | F1 Score (%) | Train time (s) | Test time (s) |
|---|---|---|---|---|---|---|
| LeNet-5 | 68.97 | 69.75 | 67.44 | 66.68 | 1086 | 1135 |
| Alex Net | 72.34 | 70.74 | 73.88 | 71.24 | 1233 | 1337 |
| VGG16 | 74.08 | 75.29 | 75.08 | 75.13 | 1352 | 1011 |
| VGG19 | 82.17 | 83.33 | 82.19 | 84.21 | 1343 | 947 |
| DenseNet121 | 92.47 | 93.55 | 93.47 | 94.48 | 1201 | 937 |
| Squeeze Network | 93.57 | 92.65 | 94.79 | 93.56 | 1098 | 1012 |
| Mobile Network | 95.09 | 94.35 | 95.68 | 93.46 | 890 | 987 |
| Inception Network | 96.96 | 98.17 | 98.96 | 97.02 | 710 | 974 |
| Residual Network | 97.32 | 98.42 | 98.32 | 98.35 | 783 | 1056 |
| Xception Network | 99.13 | 98.18 | 98.43 | 99.19 | 750 | 865 |
| Efficient Network-B3 | 99.49 | 98.62 | 98.72 | 99.37 | 786 | 854 |
Different sensors used in real-time Heart Sound analysis methods_
| Denoising domain | Type of sensors used | Number of sensors | Algorithm adopted |
|---|---|---|---|
| Time | Electret condenser microphone | 1 | LMS-ANC |
| Time | Electronic stethoscope | 1 | Single input ANC |
| Time | Microphone | 1 | LMS-ALE, RLS-ALE |
| Frequency | Electronic stethoscope with an electret microphone | 1 | DWT, Hilbert transform |
| Frequency | Microphone | 1 | DWT, LMS-ALE, RLS-ALE |
| Frequency | NM | NM | EMD |
A summary of CNN and RNN based methods used in PCG signal analysis [108, 109]_
| S. No. | References | Methods | Features used | Segmentation optimizer | Types of PCG signal | |
|---|---|---|---|---|---|---|
| 1 | Maknickas and Maknickas 2017 [55] | 2D-CNN | MFSC | No | RMSprop | N, A |
| 2 | Alafif et al. 2020 [56] | 2D-CNN + transfer learning | MFCC | No | SGD | N, A |
| 3 | Deng et al. 2020 [54] | CNN + RNN | Improved MFCC | No | Adam | N, A |
| 4 | Abduh et al. 2019 [57] | 2D-DNN | MFSC | No | Adam | N, A |
| 5 | Chen et al. 2018 [58] | 2D-CNN | Wavelet transform + Hilbert–Huang features | No | Adam | N, M, EXT |
| 6 | Rubin et al. 2016 [59] | 2D-CNN | MFCC | Yes | Adam | N, A |
| 7 | Nilanon et al. 2016 [60] | 2D-CNN | Spectrograms | No | SGD | N, A |
| 8 | Dominguez-Morales et al. 2018 [61] | 2D-CNN | Spectrograms | No | Adam | N, A |
| 9 | Bozkurt et al. 2018 [62] | 2D-CNN | MFCC + MFSC | Yes | Adam | N, A |
| 10 | Chen et al. 2019 [63] | 2D-CNN | MFSC | No | Adam | N, A |
| 11 | Cheng et al. 2019 [64] | 2D-CNN | Spectrograms | No | Adam | N, A |
| 12 | Demir et al. 2019 [65] | 2D-CNN | Spectrograms | No | Adam | N, M, EXT |
| 13 | Ryu et al. 2016 [66] | 1D-CNN | 1D time-series signals | No | SGD | N, A |
| 14 | Xu et al. 2018 [67] | 1D-CNN | 1D time-series signals | No | SGD | N, A |
| 15 | Xiao et al. 2020 [68] | 1D-CNN | 1D time-series signals | No | SGD | N, A |
| 16 | Oh et al. 2020 [69] | 1D-CNN WaveNet | 1D time-series signals | NO | Adam | N, AS, MS, MR, MVP |
| 17 | Khan et al. 2020 [70] | LSTM | MFCC | No | Adam | N, A |
| 18 | Yang et al. 2016 [71] | RNN. | 1D time-series signals | No | Adam | N, A |
| 19 | Raza et al. 2018 [72] | LSTM | 1D time-series signals | No | Adam | N, A |
| 20 | Tschannen et al. 2016 [73] | 2D-CNN + SVM | Deep features | Yes | Adam | N, A |