References
- Singh, R., Ashok, A., & Saraswat, M. (2020). Optimised robust watermarking technique using CKGSA in DCT-SVD domain. IET Image Processing, 14(10), 2052–2063.
- Bhardwaj, C., & Urvashi, S. M. (2017). Implementation and performance assessment of compressed sensing for images and video signals. Journal of Global Pharma Technology, 6(9), 123–133.
- He, Y., & Hu, Y. (2018, May). A proposed digital image watermarking based on DWT-DCT-SVD. In 2018 2nd IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC) (pp. 1214–1218). IEEE.
- Bhardwaj, C., Sharma, U., Jain, S., & Sood, M. (2019). Implementation and Performance Assessment of Biomedical Image Compression and Reconstruction Algorithms for Telemedicine Applications: Compressive Sensing for Biomedical Images. In Medical Data Security for Bioengineers (pp. 52–80). IGI Global.
- Zear, A., & Singh, P. K. (2022). Secure and robust color image dual watermarking based on LWT-DCT-SVD. Multimedia Tools and Applications, 81(19), 26721–26738.
- Awasthi, D., & Srivastava, V. K. (2022). LWT-DCT-SVD and DWT-DCT-SVD based watermarking schemes with their performance enhancement using Jaya and Particle swarm optimization and comparison of results under various attacks. Multimedia Tools and Applications, 81(18), 25075–25099.
- Novamizanti, L., Wahidah, I., & Dhea Prameiswari Wardana, N. P. (2020). A Robust Medical Images Watermarking Using FDCuT-DCT-SVD. International Journal of Intelligent Engineering & Systems, 13(6).
- Ernawan, F., Ramalingam, M., Sadiq, A. S., & Mustaffa, Z. (2017). An improved imperceptibility and robustness of 4 × 4 DCT-SVD image watermarking with a modified entropy. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 9(2–7), 111–116.
- Kanhe, A., & Gnanasekaran, A. (2018). Robust image-in-audio watermarking technique based on DCT-SVD transform. EURASIP Journal on Audio, Speech, and Music Processing, 2018(1), 1–12.
- Mokashi, B., Bhat, V. S., Pujari, J. D., Roopashree, S., Mahesh, T. R., & Alex, D. S. (2022). Efficient Hybrid Blind Watermarking in DWT-DCT-SVD with Dual Biometric Features for Images. Contrast Media & Molecular Imaging, 2022.
- Rippel, O., & Bourdev, L. (2017, July). Real-time adaptive image compression. In International Conference on Machine Learning (pp. 2922–2930). PMLR.
- Gan, Z., Chai, X., Bi, J., & Chen, X. (2022). Content-adaptive image compression and encryption via optimized compressive sensing with double random phase encoding driven by chaos. Complex & Intelligent Systems, 8(3), 2291–2309.
- Liu, H., Yuan, H., Liu, Q., Hou, J., Zeng, H., & Kwong, S. (2021). A hybrid compression framework for color attributes of static 3D point clouds. IEEE Transactions on Circuits and Systems for Video Technology, 32(3), 1564–1577.
- Jifara, W., Jiang, F., Rho, S., Cheng, M., & Liu, S. (2019). Medical image denoising using convolutional neural network: a residual learning approach. The Journal of Supercomputing, 75, 704–718.
- Zamir, S. W., Arora, A., Khan, S., Hayat, M., Khan, F. S., Yang, M. H., & Shao, L. (2021). Multi-stage progressive image restoration. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 14821–14831).
- He, Z., Li, H., Wang, Z., Xia, S., & Zhu, W. (2021). Adaptive compression for online computer vision: An edge reinforcement learning approach. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 17(4), 1–23.
- Bai, Y., Yang, X., Liu, X., Jiang, J., Wang, Y., Ji, X., & Gao, W. (2022, June). Towards end-to-end image compression and analysis with transformers. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 36, No. 1, pp. 104–112).
- Cao, F., Guo, D., Wang, T., Yao, H., Li, J., & Qin, C. (2023). Universal screen-shooting robust image watermarking with channel-attention in DCT domain. Expert Systems with Applications, 238, 122062.
- Kanagaraj, H., & Muneeswaran, V. (2020, March). Image compression using HAAR discrete wavelet transform. In 2020 5th International Conference on Devices, Circuits and Systems (ICDCS) (pp. 271–274). IEEE.
- Liu, X., An, P., Chen, Y., & Huang, X. (2022). An improved lossless image compression algorithm based on Huffman coding. Multimedia Tools and Applications, 81(4), 4781–4795.
- Lee, J. H., Gwon, G. H., Kim, I. H., & Jung, H. J. (2023). A Motion Deblurring Network for Enhancing UAV Image Quality in Bridge Inspection. Drones, 7(11), 657.
- Garg, G., & Kumar, R. (2022). Analysis of image types, compression techniques and performance assessment metrics: A review. Journal of Information and Optimization Sciences, 43(3), 429–436.
- Abdulrahman, A. K., & Ozturk, S. (2019). A novel hybrid DCT and DWT based robust watermarking algorithm for color images. Multimedia Tools and Applications, 78, 17027–17049.
- Yeganegi, F., Hassanzade, V., & Ahadi, S. M. (2018, May). Comparative performance evaluation of SVD-based image compression. In Electrical Engineering (ICEE), Iranian Conference on (pp. 464–469). IEEE.
- Cui, Y., Liu, Z., Yao, W., Li, Q., Chan, A. B., Kuo, T. W., & Xue, C. J. (2020). Fully Nested Neural Network for Adaptive Compression and Quantization. In IJCAI (pp. 2080–2087).
- Chen, Y. K., Yang, S. W., Ndiour, I. J., Liao, Y., Somayazulu, V. S., Tickoo, O., & Varadarajan, S. (2020). U.S. Patent No. 10,742,399. Washington, DC: U.S. Patent and Trademark Office.
- Alseelawi, N., Hazim, H. T., & Salim ALRikabi, H. T. (2022). A Novel Method of Multimodal Medical Image Fusion Based on Hybrid Approach of NSCT and DTCWT. International Journal of Online & Biomedical Engineering, 18(3).
- Nandeesha, R., & Somashekar, K. (2023). Content-Based Image Compression Using Hybrid Discrete Wavelet Transform with Block Vector Quantization. International Journal of Intelligent Systems and Applications in Engineering, 11(5s), 19–37.
- Lu, Y., Gong, M., Huang, Z., Zhang, J., Chai, X., & Zhou, C. (2022). Exploiting compressed sensing (CS) and RNA operations for effective content-adaptive image compression and encryption. Optik, 263, 169357.
- Akbari, M., Liang, J., Han, J., & Tu, C. (2021). Learned multi-resolution variable-rate image compression with octave-based residual blocks. IEEE Transactions on Multimedia, 23, 3013–3021.
- Sun, X. X., Pan, J. S., Weng, S., Hu, C. C., & Chu, S. C. (2023). Optimization of MSFs for watermarking using DWT-DCT-SVD and fish migration optimization with QUATRE. Multimedia Tools and Applications, 82(2), 2255–2276.
- Klein, S. T., Saadia, S., & Shapira, D. (2021). Forward looking Huffman coding. Theory of Computing Systems, 65, 593–612.
- Ahmad, I., Choi, W., & Shin, S. (2023). Comprehensive Analysis of Compressible Perceptual Encryption Methods—Compression and Encryption Perspectives. Sensors, 23(8), 4057.
- Jiang, J., Xie, X., Yu, X., You, Z., & Hu, Q. (2023). RCA-PixelCNN: Residual Causal Attention PixelCNN for Pulsar Candidate Image Lossless Compression. Applied Sciences, 13(19), 10941.
- Dimililer, K. (2022). DCT-based medical image compression using machine learning. Signal, Image and Video Processing, 16(1), 55–62.
- Farghaly, S. H., & Ismail, S. M. (2020). Floating-point discrete wavelet transform-based image compression on FPGA. AEU-International Journal of Electronics and Communications, 124, 153363.
- Liu, Z., Wang, H., & Su, T. (2022, October). Learned Image Compression with Multi-Scale Spatial and Contextual Information Fusion. In 2022 IEEE International Conference on Image Processing (ICIP) (pp. 706–710). IEEE.
- Samkari, E., Arif, M., Alghamdi, M., & Al Ghamdi, M. A. (2023). Human Pose Estimation Using Deep Learning: A Systematic Literature Review. Machine Learning and Knowledge Extraction, 5(4), 1612–1659.