Figure 1:

Figure 2:

Figure 3:

Figure 4:
![Human Body Proportion Model [29].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/6471fb66215d2f6c89db76dd/j_ijssis-2023-0008_fig_004.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=ASIA6AP2G7AKPHWW2NVE%2F20260131%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20260131T171501Z&X-Amz-Expires=3600&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEOz%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaDGV1LWNlbnRyYWwtMSJIMEYCIQDW8Rh9yLZGI1ijvPVsmnT8mC4p%2B%2Bt%2BrFzlP9yNfroZfAIhAJhgm10XBtA%2FC%2Bi8xMMDzwxBpEkvWZWwQStiVqOMysGfKsUFCLX%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEQAhoMOTYzMTM0Mjg5OTQwIgzd2CzlpFKbNV0ZnIkqmQUHFgwJHKpgYFP5Q%2F9HNO4rEwnX2O%2BeqFds%2Fb%2FWPxEWct9nkFKTuFqlia5VUDT43vr1AWAPgW4Qsy1uy0%2BXwG2sQDwLkvLoOk10%2B%2FDRvHguokg4JEHENYBjtQklOk5FlhAAK172bR8EPjK1X3Dwjignmn3KCpEspbjVoT25cv%2F%2FUfB6%2FSGf6an6tFrwYhfLc2sTpEFjmO0DtcJC5Vj4tzTqomUKrRUBlVgqF3A3l5JuskvwMQ65YIw3RPeJXS7ZqwKH%2BdTcPiv9VEv8tOxWlw0Owo8u7BeQRCi5ezVMwfv9CZNYl9n7%2FXmJV42wyn06LP%2B0XXTxWlcV1UovClKC%2BIrXqM%2B%2FEuz4d9ZmKInkHZp9XiCO%2FLvqkJF9Csluzmfs0I%2F8QYQJuRjegU6qkOae8LcaxDeI32UJyoyamAJKvySUvJw0AsDgpQ2mA%2F2oex1uHmpILHRFA1fjF7z81ICoQN7u8an5H7CscFsrXCxSPa5k0%2FhR58yRiGMsT42YBqGMDV8HL%2FxyQpif8b6LjPdi0c5mTUEe6QwSD0dSJhDxmDdHew%2BOdBDTQ6gTHX%2FYTNmGhuMbHivbpifNhw4c2WKbUIquLEThhjjF%2FoqhFQepHriU8fFvHJ6vfY66htehVGnsGguS1q2VG6lwOoVek8l4yrmWTH6UNEoPBPsr8L4TC0%2BV13hH6G5VqqMU9AFZO%2FJSusLRRrqtx6v2YuPxpVNmFrDfhkIW27rQQFrX%2F2MgLNZgwH37V8dDK1CdRq6dcQ4fhvJmVpc8a%2FlRpnXruxiVYMiOjRJ9iDfGK4RygKN81xxWcbRoX8bVHsR2oiQ7XAkmy%2BNzQQDPYboFSecFBiWq54bZ5DvKRHz3NI1u7yz0j5bnhY1nsS%2FaREaJmjCu5vfLBjqwAXFYmAA0f5jIYB3ysRJlLU57P6HvzkhWSkB85lpzfC7OTrY86wY7ue2DsZGjTDimf3%2FPUfDkrkacfsQ9B37%2FDT2buIRBBuXtjrugIh64Gita9D3s8VjTR0BlMxbyx1BWVohHOZFgnV9BS2qXKFiFTJOgYO6q4sZRCoxn9vxThFsEBkvUYcT%2BvUdcw65W4yx9Rs2LedvE5kL%2FHZdzQNJzvcbJBlbFDWQvX%2FO4yOnaV2tx&X-Amz-Signature=ed7a3b42c1a1d25c05cd452262b7a39e1f1278fdb2773e8b7dbddeca5a308f92&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 5:

Figure 6:

Figure 7:

Figure 8:

Figure 9:

Figure 10:

Figure 11:

Figure 12:

Figure 13:

The selected superpixels and their location based on bend line
| Superpixels | Location |
|---|---|
| B + 3h | |
| B + 2h | |
| B + 2h | |
| B + h | |
| B + h |
Comparison of precision, recall, and F1 scores on the PETS2006 dataset
| Methods | Precision | Recall | F1 score |
|---|---|---|---|
| Damen and Hog (2012) | 50% | 55% | 52% |
| Ghadiri et al. (2017) | 57% | 71% | 63% |
| Ghadiri et al. (2019) | 60% | 79% | 68% |
| Proposed Methods | |||
| BP_SC1 | 56% | 85% | 68% |
| BP_SC2 | 59% | 83% | 69% |
SLIC segmentation
| 1: | Centroid Initialization Ck=[lk,ak,bk,xk,yk]T |
| 2: | Put centroid in n × n window |
| 3: | repeat |
| 4: | for each cluster Ck do |
| 5: | Group each pixel in the nearest centroid (based on measurement of pixel distance to centroid) |
| end for | |
| 6: | Update centroid |
| 7: | until centroid unchanged |
Number of test images in each dataset
| Dataset | Test Images |
|---|---|
| DIKE20 | 271 |
| PETS2006 | 323 |
| i-LIDS | 185 |
| Total | 779 |
The precision, recall, and F1 scores on DIKE20 dataset
| Methods | Precision | Recall | F1 score |
|---|---|---|---|
| BP_SC1 | 46% | 79% | 60% |
| BP_SC2 | 52% | 80% | 63% |
Comparison of precision, recall, and F1 scores on the i-LIDS dataset
| Methods | Precision | Recall | F1 score |
|---|---|---|---|
| Damen and Hog (2012) | 52% | 47% | 49% |
| Ghadiri et al. (2017) | 62% | 60% | 61% |
| Ghadiri et al. (2019) | 72% | 64% | 67% |
| Proposed Methods | |||
| BP_SC1 | 49% | 90% | 64% |
| BP_SC2 | 52% | 95% | 67% |