Figure 1:

Figure 2:
![Encoder–decoder model with attention [3].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/6471fb66215d2f6c89db76dd/j_ijssis-2023-0007_fig_002.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251205%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251205T220601Z&X-Amz-Expires=3600&X-Amz-Signature=bc7ab110e96c80ac071a35f2b098a78c0baf704f486128eaf55be0b90a14f2f1&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 3:
![Transformer model [21].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/6471fb66215d2f6c89db76dd/j_ijssis-2023-0007_fig_003.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251205%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251205T220601Z&X-Amz-Expires=3600&X-Amz-Signature=f723c390f997bde6b0c3e8cd936186a7c7d7e8f1204c933bc5035147d62e12f2&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 4:

Figure 5:

Figure 6:

Figure 7:

Figure 8:

Figure 9:

Figure 10:

Attention-based NMT outperforms SMT for the Bengali–Hindi language pair (Das et al_ [32])
| Translation model | BLEU score | Iterations |
|---|---|---|
| Attention-based NMT model | 20.41 | 25 |
| MOSES (SMT) | 14.35 | - |
NMT outperformed SMT with transfer learning, ensemble, and further processing of data (Zopth et al_)
| Language | SBMT | NMT | Transfer | Final |
|---|---|---|---|---|
| Hausa | 23.7 | 16.8 | 21.3 | 24.0 |
| Turkish | 20.4 | 11.4 | 17.0 | 18.7 |
| Uzbek | 17.9 | 10.7 | 14.4 | 16.8 |
| Urdu | 17.9 | 5.2 | 13.8 | 14.5 |
NMT system with transformer model and BPE outperformed phrase-based SMT for English–Hindi and Hindi–English language pairs (Haque et al_ [33])
| MT model | BLEU | METEOR | TER |
|---|---|---|---|
| Eng.Hindi-PBSMT | 28.8 | 30.2 | 53.4 |
| Eng.Hindi-NMT | 36.6 | 33.5 | 46.3 |
| Hindi–Eng.PBSMT | 34.1 | 36.6 | 50.0 |
| Hindi–Eng.NMT | 39.9 | 38.5 | 42.0 |
English–Hindi translation using different optimizers
| Language pair | Optimizer | BLEU-4 score | NMT model | No. of epochs |
|---|---|---|---|---|
| Eng.–Hindi | Adam | 12.25 | NMT with attention | 14 |
| Eng.–Hindi | SGD | 11.50 | NMT with attention | 14 |
| Eng.–Hindi | 16.64 | MOSES |
English–Bengali translation BLEU scores using different optimizers
| Language pairs | Optimizer | BLEU-4 score | MT model | No. of epochs |
|---|---|---|---|---|
| Eng.–Beng. | Adam | 10.78 | NMT with attention | 12 |
| Eng.–Beng. | SGD | 11.17 | NMT with attention | 12 |
| Eng.–Beng. | 14.58 | MOSES |
BLEU-1, 2, and 3 scores are summarized for Eng_–Beng_ and Eng_–Hindi language pairs using Adam- and SGD-Optimizers
| BLEU | Eng.–Beng.-NMT (Adam-Optimizer) | Eng.–Beng.-NMT (SGD-Optimizer) | Eng.–Hindi (NMT-Adam) | Eng.–Hindi (NMT-SGD) |
|---|---|---|---|---|
| BLEU-1 | 14.15 | 13.91 | 15.77 | 14.18 |
| BLEU-2 | 12.65 | 13.11 | 14.12 | 13.33 |
| BLEU-3 | 11.83 | 12.17 | 13.95 | 12.19 |
For various low-resource corpus SMT outperformed NMT (Ahmadnia et al_ [17])
| Corpus | SMT | NMT | NMT* | NMT** |
|---|---|---|---|---|
| Gnome | 20.54 | 15.49 | 17.26 | 18.76 |
| KDE4 | 15.64 | 13.36 | 14.29 | 15.71 |
| Subtitles | 18.82 | 18.62 | 19.51 | 22.54 |
| Ubuntu | 16.76 | 14.27 | 15.14 | 15.87 |
| Tanzil | 17.69 | 15.14 | 16.53 | 17.72 |
| Overall | 17.06 | 15.25 | 16.67 | 17.32 |