References
- Balian, S., McGovern, S. K., Abella, B. S., Blewer, A. L. and Leary, M. 2019. Feasibility of an augmented reality cardiopulmonary resuscitation training system for health care providers. Heliyon 5(8): e02205.
- Baysal, U. and Şengül, G. 2010. Single camera photogrammetry system for EEG electrode identification and localization. Annals of Biomedical Engineering 38: 1539–1547.
- Bioulac, S., Purper-Ouakil, D., Ros, T., Blasco-Fontecilla, H., Prats, M., Mayaud, L. and Brandeis, D. 2019. Personalized at-home neurofeedback compared with long-acting methylphenidate in an european non-inferiority randomized trial in children with ADHD. BMC Psychiatry 19(237): 1–13.
- Bjorn, M., Ravyse, W. S., Villafruella, D. S., Luimula, M. and Leivo, S. 2018. Higher education learner experience with fuzzy feedback in a digital learning environment. 9th IEEE International Conference on Cognitive Infocommunications (CogInfoCom), pp. 253–260.
- Boonbrahm, S., Boonbrahm, P. and Kaewrat, C. 2020. The use of marker-based augmented reality in space measurement. Procedia Manufacturing 42: 337–343.
- Chen, S., He, Y., Qiu, H., Yan, X. and Zhao, M. 2019. Spatial localization of EEG electrodes in a TOF + CCD camera system. Frontiers in Neuroinformatics 13(21): 1–11.
- Cline, C. C., Coogan, C. and He, B. 2018. EEG electrode digitization with commercial virtual reality hardware. PLoS ONE 13(11): e0207516.
- Collura, T. F., Mm. Ed, J. G., Tarrant, J., Bailey, J. M. and Starr, F. 2010. EEG biofeedback case studies using live Z-score training and a Normative Database. Journal of Neurotherapy 14: 22–46.
- de Munck, J. D., Vijn, P. and Spekreijse, H. 1991. A practical method for determining electrode positions on the head. Electroencephalography and Clinical Neurophysiology 78(1): 85–87.
- Frantz, T., Jansen, B., Duerinck, J. and Vandemeulebroucke, J. 2018. Augmenting Microsoft's HoloLens with vuforia tracking for neuronavigation. Healthcare Technology Letters 5(5): 221–225.
- Hammond, D. 2011. What is neurofeedback: an update. Journal of Neurotherapy 15: 305–336.
- Honkamaa, P., Siltanen, S., Jäppinen, J., Woodward, C. and Korkalo, O. 2007. Interactive outdoor mobile augmentation using markerless tracking and GPS. Virtual Reality International Conference (VRIC), pp. 285–288, Laval, France.
- Jeon, S., Chien, J., Song, C. and Hong, J. 2017. A preliminary study on precision image guidance for electrode placement in an EEG study. Brain Topography 31: 174–185.
- Klem, G. H., Lüders, H., Jasper, H. H. and Elger, C. E. 1999. The ten-twenty electrode system of the International Federation. The International Federation of Clinical Neurophysiology. Electroencephalography and Clinical Neurophysiology 52: 3–6.
- Markram, H. 2013. Seven challenges for neuroscience. Functional Neurology 28(3): 145–151.
- Marzbani, H., Marateb, H. R. and Mansourian, M. 2016. Neurofeedback: a comprehensive review on system design, methodology and clinical applications. Basic and Clinical Neuroscience 7(2): 143–158.
- Nguyen, V. T. and Dang, T. 2017. Setting up virtual reality and augmented reality learning environment in unity. IEEE International Symposium on Mixed and Augmented Reality (ISMAR-Adjunct), pp. 315–320.
- Peng, F. and Zhai, J. 2017. A mobile augmented reality system for exhibition hall based on Vuforia. 2nd International Conference on Image Vision and Computing (ICIVC), pp. 1049–1052.
- Pérez-Elvira, R., Oltra-Cucarella, J. and Carrobles, J. A. 2021. Effects of quantitative electroencephalogram normalization using 4-channel live z-score training neurofeedback for children with learning disabilities: preliminary data. Behavioral Psychology-Psicologia Conductual 29: 191–206.
- Rodríguez-Calvache, M., Calle, A., Valderrama, S., López, I. A. and López, J. D. 2018. Analysis of exact electrode positioning systems for multichannel-EEG. 5th Workshop on Engineering Applications, WEA, Medellín, Colombia.
- Sadeghi-Niaraki, A. and Choi, S. M. 2020. A survey of marker-less tracking and registration techniques for health & environmental applications to augmented reality and ubiquitous geospatial information systems. Sensors 20(10): 2997.
- Schneider, M., Kunz, C., Pal’a, A., Wirtz, C. R., Mathis-Ullrich, F. and Hlaváč, M. 2021. Augmented reality-assisted ventriculostomy. Neurosurgical Focus 50(1): E16.
- Shields, S. M., Morse, C. E., Applebaugh, E. D., Muntz, T. L. and Nichols, D. F. 2016. Are electrode caps worth the investment? an evaluation of EEG methods in undergraduate neuroscience laboratory courses and research. Journal of Undergraduate Neuroscience Education: JUNE: a Publication of FUN, Faculty for Undergraduate Neuroscience 15(1): A29–A37.
- Shirazi, S. Y. and Helen, H. J. 2019. More reliable EEG electrode digitizing methods can reduce source estimation uncertainty, but current methods already accurately identify brodmann areas. Frontiers in Neuroscience 13: 1159.
- Song, C., Jeon, S., Lee, S., Ha, H. G., Kim, J. and Hong, J. 2018. Augmented reality-based electrode guidance system for reliable electroencephalography. Biomedical Engineering Online 17(1): 64.
- van Krevelen, D. W. F. and Poelman, R. 2010. A survey of augmented reality technologies, applications and limitations. International Journal of Virtual Reality 9(2): 1–20.
- Xiao, C. and Lifeng, Z. 2014. Implementation of mobile augmented reality based on Vuforia and Rawajali. IEEE 5th International Conference on Software Engineering and Service Science, pp. 912–915.