Have a personal or library account? Click to login
The global cross-border mergers and acquisitions network between 1990 and 2021 Cover

The global cross-border mergers and acquisitions network between 1990 and 2021

Open Access
|Dec 2023

Figures & Tables

Figure 1.

Number of global M&A transactions per year.
Source: Own calculations. CBM&A, cross-border mergers and acquisitions; M&A, mergers and acquisitions.
Number of global M&A transactions per year. Source: Own calculations. CBM&A, cross-border mergers and acquisitions; M&A, mergers and acquisitions.

Figure 2.

The topological characteristics of the global CBM&A network from 1990 to 2021.
Source: Own calculations. CBM&A, cross-border mergers and acquisitions
The topological characteristics of the global CBM&A network from 1990 to 2021. Source: Own calculations. CBM&A, cross-border mergers and acquisitions

Figure 3.

The global CBM&A network in 2021. *Nodes are represented by countries, and the tie strength is reflected by the number of transactions. The Fruchterman-Reingold algorithm is used to visualize the network. The size of the nodes replicates the level of the degree indicator.
Source: Own calculations in Gephi 0.9.2. CBM&A, cross-border mergers and acquisitions.
The global CBM&A network in 2021. *Nodes are represented by countries, and the tie strength is reflected by the number of transactions. The Fruchterman-Reingold algorithm is used to visualize the network. The size of the nodes replicates the level of the degree indicator. Source: Own calculations in Gephi 0.9.2. CBM&A, cross-border mergers and acquisitions.

The ranking of the top 10 countries for different centrality measurements, 1990–2021 (the node representing USA was removed from the network)

Place in the rankingAverage place
1990–19931994–19971998–20012002–20052006–20092010–20132014–20172018–20211990–2021
Degree centrality
1GBRGBRGBRGBRGBRGBRGBRGBRGBR
2FRADEUDEUDEUDEUDEUDEUDEUDEU
3DEUFRAFRAFRAFRAFRAFRAFRAFRA
4NLDNLDNLDHKGAUSCHNCHNNLDNLD
5ITAAUSSWENLDNLDAUSHKGESPSWE
6SWECANCHECHNCHNRUSNLDSWEAUS
7CHESWEESPAUSSWEHKGSGPCHNHKG
8ESPCHEITASWEHKGCANESPSGPCHN
9JPNITAAUSSGPCANNLDAUSAUSCAN
10AUSHKGBELCANCHESGPCANHKGESP
Betweenness centrality
1GBRGBRGBRGBRGBRGBRGBRGBRGBR
2FRADEUFRACANCANCANFRAFRAFRA
3DEUFRACANDEUAUSAUSCANDEUCAN
4CANCANDEUFRAFRAFRADEUCANDEU
5HKGAUSESPAUSDEURUSAUSESPAUS
6ESPZAFAUSESPRUSDEUESPAUSESP
7ITANLDCHENLDESPESPNLDNLDNLD
8AUSSGPRUSHKGNLDCHNRUSSGPRUS
9CHEITAZAFCHEITASGPHKGZAFHKG
10NLDESPNLDINDINDHKGITAHKGITA
Eigenvector centrality
1FRADEUDEUDEUDEUDEUDEUGBRDEU
2DEUFRAFRAGBRGBRGBRGBRDEUGBR
3GBRGBRGBRFRAAUSAUSFRAESPFRA
4ITAITAESPCHNFRAFRAESPNLDESP
5ESPNLDNLDESPCHNCHNITAFRAITA
6NLDESPITAAUSESPESPNLDITANLD
7CHECHECHEITAITACANCHNAUSAUS
8BELAUSAUSNLDCANRUSAUSBELCHE
9SWEPOLSWECHESWENLDCANIRLCHN
10AUSAUTBELSWERUSITACHESWESWE

The main investment destinations of the top 10 countries with the highest average out-degree value, 1990–2021

Source countryTarget countryAverage number of CBM&A transactions
1990–19931994–19971998–20012002–20052006–20092010–20132014–20172018–20211990–2021
USAGBR123211309193244246318335247
CAN84174264187271227272307223
DEU471181131151159810298101
AUS2352834978889010270
FRA457987646858747468
GBRUSA113152229132176141185213168
DEU355470547150606257
FRA476069484135485851
AUS172346325638374136
NLD253037232521425933
CANUSA76160257230275263299368241
GBR132423202527354426
AUS31013132123182416
MEX1541131239511
FRA5111078910109
DEUUSA202990365345685449
GBR232553313926393934
FRA283447293127303332
CHE152450244126282829
AUT122141202919242424
FRAUSA242464375142595845
DEU274138273231424135
GBR292346233634434535
ESP221529213124444929
ITA272429152320303826
NLDCHN4266610213215418611197
USA881381517251413
AUS45892027141713
SGP451113119171511
GBR107538715128
JPNFIN122635223119264827
NOR9929233637344027
USA81027152622273821
DNK10922202625273121
GBR12819152314172917
HKGUSA903646274359708056
CHN157141324171412
GBR16778814221412
VNM010041515186
IND115361818169
SWEDEU174044283730353733
USA142244132921253125
GBR162034213023222924
BEL111423192516192118
FRA92029151513181417
CHEDEU172934345440504438
USA122030193630383628
FRA161415121511162015
GBR881491712111812
ITA661451111131310

Average percentage shares of individual economic sectors in the global CBM&A network, 1990–2021

Economic sector1990–19931994–19971998–20012002–20052006–20092010–20132014–20172018–20211990–2021
TRBC* economic sector of the acquirer
Financial17%17%19%25%29%32%36%37%26.4%
Industrial22%23%22%19%18%18%17%17%19.4%
Basic materials18%17%17%14%12%12%12%10%14.0%
Technology16%14%11%11%11%10%8%7%10.8%
Consumer cyclicals6%8%12%12%11%10%11%14%10.4%
Healthcare9%8%6%7%5%6%5%5%6.4%
Consumer non-cyclicals5%4%4%5%5%5%5%6%5.0%
Energy4%4%3%4%4%4%3%2%3.5%
Telecommunications services1%2%3%3%2%1%1%1%1.9%
Utilities1%1%2%2%2%1%1%1%1.6%
TRBC* economic sector of the target
Industrial25%25%27%22%22%22%21%21%23.2%
Financial20%20%17%16%16%16%16%14%17.0%
Technology11%11%12%13%14%14%16%14%13.1%
Consumer cyclicals7%7%12%13%13%12%15%19%12.2%
Basic materials15%15%11%12%12%13%9%8%11.8%
Consumer non-cyclicals10%9%8%8%7%8%9%7%8.2%
Healthcare6%5%5%6%6%6%7%9%6.3%
Energy4%4%3%4%5%6%4%3%4.3%
Utilities1%2%3%3%2%2%1%2%2.0%
Telecommunications services1%1%2%2%2%2%2%3%1.9%

The ranking of the top 10 countries for different degree centrality measurements, 1990–2021

Place in the rankingAverage place
1990–19931994–19971998–20012002–20052006–20092010–20132014–20172018–20211990–2021
Degree centrality
1USAUSAUSAUSAUSAUSAUSAUSAUSA
2GBRGBRGBRGBRGBRGBRGBRGBRGBR
3FRADEUDEUDEUDEUCANDEUCANDEU
4DEUFRAFRACANCANDEUCANDEUCAN
5CANCANCANFRAFRAFRAFRAFRAFRA
6JPNNLDNLDAUSAUSAUSCHNNLDNLD
7NLDAUSSWECHNCHNCHNHKGAUSAUS
8ITACHEAUSNLDNLDNLDNLDESPSWE
9SWESWECHEHKGSWEHKGAUSSWECHN
10CHEITAITASWEHKGRUSESPCHNHKG
In-degree centrality
1USAUSAUSAUSAUSAUSAUSAUSAUSA
2GBRGBRGBRGBRGBRGBRGBRGBRGBR
3FRADEUDEUDEUDEUDEUDEUDEUDEU
4DEUFRAFRACHNCANCANCANCANCAN
5ITACANCANCANCHNCHNCHNESPFRA
6CANAUSAUSFRAAUSAUSFRAFRAAUS
7ESPITANLDAUSFRARUSESPNLDCHN
8NLDNLDESPHKGINDFRAAUSAUSESP
9AUSESPITAESPRUSINDITAITANLD
10SWESWESWESWESWEBRANLDCHNITA
Out-degree centrality
1USAUSAUSAUSAUSAUSAUSAUSAUSA
2GBRGBRGBRGBRGBRGBRGBRGBRGBR
3FRACANDEUCANCANCANCANCANCAN
4JPNDEUFRADEUDEUDEUFRAFRADEU
5DEUFRACANFRAFRAFRADEUDEUFRA
6CANNLDNLDNLDNLDHKGHKGJPNNLD
7NLDCHESWEHKGAUSJPNJPNSWEJPN
8CHESWECHESGPHKGNLDCHNNLDHKG
9SWEJPNBELSWESWECYPSGPSGPSWE
10ITAAUSJPNAUSCHESGPNLDHKGCHE

The synthesis of SNA parameters used in selected research concerning M&A transactions

Analysis levelAuthors of researchPeriodNetwork typeNodesEdgesNetwork indicators
MacroSánchez-Díez et al. [2016]1999–2012The overall weighted-directed CBM&A network in Latin AmericaCountriesValue of CBM&A transactionsDensity, total degree, centrality, eigenvector, out-degree, in-degree
Three weighted-directed sectoral CBM&A networks for the energy, finance, and telecommunications sectors
Dueñas et al. [2017]*1995–2010The binary-directed CBM&As networkCountriesNumber of CBM&A transactionsDensity, reciprocity, degree, average nearest-neighbor degree, clustering coefficient
The weighted-directed CBM&As networkValue of CBM&A transactions
Galaso and Sánchez-Díez [2020]1999–2013The binary-directed CBM&As networkCountriesNumber of CBM&A transactionsDensity, reciprocity, core-periphery model, in-degree, out-degree, eigenvector
The weighted-directed CBM&As networkValue of CBM&A transactions
MesoBrózda-Wilamek [2020]2000–2017The directed Chinese CBM&As networkIndustry sectorsNumber of CBM&A transactionsDegree, in-degree, out-degree, closeness, eigenvector
Brózda-Wilamek [2021]2010–2020Three separate directed networks for Hungarian, Czech, and Polish CBM&A transactionsBusiness sectorNumber of CBM&A transactionsDegree, in-degree, out-degree, betweenness, eigenvector
Waßenhoven et al. [2021]1995–2018The industry-directed network of M&A dataIndustry sectors where at least one sector is related to the bioeconomyNumber of M&A transactionsDensity, average geodesic distance, reciprocity, degree, out-degree, in-degree, betweenness
MicroGuo et al. [2019]2000–2017The directed Chinese company M&A networkChinese companiesValue of M&A transactionsOut-degree, in-degree, betweenness, closeness, PageRank

The ranking of the top 10 countries in terms of the betweenness and eigenvector centrality, 1990–2021

Place in the rankingAverage place
1990–19931994–19971998–20012002–20052006–20092010–20132014–20172018–20211990–2021
Betweenness centrality
1USAUSAUSAUSAUSAUSAUSAUSAUSA
2GBRGBRGBRGBRGBRGBRGBRGBRGBR
3FRAFRAFRACANCANCANFRAFRAFRA
4DEUDEUCANDEUAUSAUSCANCANCAN
5HKGCANRUSFRAFRARUSDEUAUSDEU
6CANZAFDEUAUSDEUFRAHKGDEUAUS
7ITASGPAUSESPRUSDEUAUSESPRUS
8AUSAUSZAFINDNLDESPSGPNLDESP
9NLDITAESPRUSITACHNCHNSGPNLD
10ESPNLDINDCHEESPZAFZAFHKGZAF
Eigenvector centrality
1USAUSAUSAUSAUSAUSAUSAUSAUSA
2GBRGBRGBRGBRGBRGBRGBRGBRGBR
3FRADEUCANCANCANCANCANCANCAN
4DEUCANDEUDEUDEUDEUDEUDEUDEU
5CANFRAFRAFRAAUSAUSFRAAUSFRA
6ITAAUSAUSAUSCHNFRAAUSFRAAUS
7ESPITANLDCHNFRABRAESPESPNLD
8NLDNLDITANLDINDINDNLDNLDESP
9AUSESPESPESPNLDCHNITAITAITA
10SWECHEBRAINDESPESPINDINDCHN
DOI: https://doi.org/10.2478/ijme-2023-0021 | Journal eISSN: 2543-5361 | Journal ISSN: 2299-9701
Language: English
Page range: 333 - 348
Submitted on: Sep 14, 2022
Accepted on: Jul 14, 2023
Published on: Dec 31, 2023
Published by: Warsaw School of Economics
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Dominika Brózda-Wilamek, published by Warsaw School of Economics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.