Have a personal or library account? Click to login
The future of web application security: Opportunities and challenges for machine learning-based techniques Cover

The future of web application security: Opportunities and challenges for machine learning-based techniques

Open Access
|Jan 2026

References

  1. Badawy A.M., Technology management simply defined: A tweet plus two characters, Journal of Engineering and Technology Management, 26(4), 219–224, 2009.
  2. Ponnapalli H.K.B., Saxena A., A digital signature architecture for web apps, IT Professional, 15(2), 42–49, 2013.
  3. Abomhara M., Køien G.M., Cyber security and the internet of things: vulnerabilities, threats, intruders, and attacks, Journal of Cyber Security and Mobility, 4, 65–88, 2015.
  4. Kumar R., Khan A.I., Abushark Y.B., Alam M.M., Agrawal A., Khan R.A., An integrated approach of fuzzy logic, AHP, and TOPSIS for estimating usable-security of web applications, IEEE Access, 8, 50944–50957, 2020.
  5. Aydos M., Aldan Ç., Co¸skun E., Soydan A., Security testing of web applications: A systematic mapping of the literature, Journal of King Saud University - Computer and Information Sciences, 34(9), 6775–6792, 2022.
  6. Genge B., Kiss I., Haller P., A system dynamics approach for assessing the impact of cyber-attacks on critical infrastructures, International Journal of Critical Infrastructure Protection, 10, 3–17, 2015.
  7. Tao F., Akhtar M.S., Jiayuan Z., The future of artificial intelligence in cybersecurity: A comprehensive survey, EAI Endorsed Transactions on Creative Technologies, 8(28), e3, 2021.
  8. Alawida M., Omolara A.E., Abiodun O.I., Al-Rajab M., A deeper look into cybersecurity issues in the wake of Covid-19: A survey, Journal of King Saud University–Computer and Information Sciences, 34(10), 8176–8206, 2022.
  9. Cui L., Yang S., Chen F., Ming Z., Lu N., Qin J., A survey on application of machine learning for internet of things, International Journal of Machine Learning and Cybernetics, 9, 1399–1417, 2018.
  10. Al-Garadi M.A., Mohamed A., Al-Ali A.K., Du X., Ali I., Guizani M., A survey of machine and deep learning methods for internet of things (IoT) security, IEEE Communications Surveys & Tutorials, 22(3), 1646–1685, 2020.
  11. Nguyen T.T., Reddi V.J., Deep reinforcement learning for cyber security, IEEE Transactions on Neural Networks and Learning Systems, 34(8), 3779–3795, 2021.
  12. Venketeswaran A., Lalam N., Wuenschell J., Ohodnicki P.R., Badar M., Chen K.P., Lu P., Duan Y., Chorpening B., Buric M., Recent advances in machine learning for fiber optic sensor applications, Advanced Intelligent Systems, 4(1), 2100067, 2021.
  13. Antoniadi A.M., Du Y., Guendouz Y., Wei L., Mazo C., Becker B.A., Mooney C., Current challenges and future opportunities for XAI in machine learning-based clinical decision support systems: A systematic review, Applied Sciences, 11(11), 5088, 2021.
  14. Macas M., Wu C., Fuertes W., A survey on deep learning for cybersecurity: Progress, challenges, and opportunities, Computer Networks, 212, 109032, 2022.
  15. Seng L.K., Ithnin N., Said S.Z.M., The approaches to quantify web application security scanners quality: A review, International Journal of Advanced Computer Research, 8(38), 285–312, 2018.
  16. https://www.alifconsulting.com/post/azure-vms-security-overview, Accessed: December 6, 2023.
  17. Bowen B.M., Hershkop S., Keromytis A.D., Stolfo S.J., Security and Privacy in Communication Networks, (Chapter 3: Baiting inside attackers using decoy documents), Security and Privacy in Communication Networks, 14–18 September 2009, Athens, Greece.
  18. AbouTrab M.S., Brockway M., Counsell S., Hierons R.M., Testing real-time embedded systems using timed automata based approaches, Journal of Systems and Software, 86(5), 1209–1223, 2013.
  19. Abolfazli S., Sanaei Z., Alizadeh M., Gani A., Xia F., An experimental analysis on cloud-based mobile augmentation in mobile cloud computing, IEEE Transactions on Consumer Electronics, 60(1), 146–154, 2014.
  20. Aazam M., Zeadally S., Harras K.A., Deploying fog computing in industrial internet of things and industry 4.0, IEEE Transactions on Industrial Informatics, 14(10), 4674–4682, 2018.
  21. Xu L.D., Xu E.L., Li L., Industry 4.0: State of the art and future trends, International Journal of Production Research, 56(8), 2941–2962, 2018.
  22. Oztemel E., Gursev S., Literature review of Industry 4.0 and related technologies, Journal of Intelligent Manufacturing, 31, 127–182, 2020.
  23. Kaka H., Zhang E., Khan N., Artificial intelligence and deep learning in neuroradiology: Exploring the new frontier, Canadian Association of Radiologists Journal, 72(1), 35–44, 2020.
  24. Sönmez F.Ö., Security qualitative metrics for open web application security project compliance, Procedia Computer Science, 151, 998–1003, 2019.
  25. Safianu O., Twum F., Hayfron-Acquah J.B., Information system security threats and vulnerabilities: Evaluating the human factor in data protection, International Journal of Computer Applications, 143(5), 8–14, 2016.
  26. Appiah V., Asante M., Nti I.K., Nyarko-Boateng O., Survey of websites and web application security threats using vulnerability assessment, Journal of Computer Science, 15(10), 1341–1354, 2019.
  27. Althunayyan M., Saxena N., Li S., Gope P., Evaluation of black-box web application security scanners in detecting injection vulnerabilities, Electronics, 11(13), 2049, 2022.
  28. Aminanto M.E., Ban T., Isawa R., Takahashi T., Inoue D., Threat alert prioritization using isolation forest and stacked auto encoder with day-forward-chaining analysis, IEEE Access, 8, 217977–217986, 2020.
  29. Lin Y.D, Liu Z.Q., Hwang R.H., Nguyen V.L., Lin P.C., Lai Y.C., Machine learning with variational AutoEncoder for imbalanced datasets in intrusion detection, IEEE Access, 10, 15247–15260, 2022.
  30. Mirza B., Haroon D., Khan B., Padhani A., Syed T.Q., Deep generative models to counter class imbalance: A modelmetric mapping with proportion calibration methodology, IEEE Access, 9, 55879–55897, 2021.
  31. Hashemi S.K., Mirtaheri S.L., Greco S., Fraud detection in banking data by machine learning techniques, IEEE Access, 11, 3034–3043, 2022.
  32. D’Alconzo A., Drago I., Morichetta A., Mellia M., Casas P., A survey on big data for network traffic monitoring and analysis, IEEE Transactions on Network and Service Management, 16(3), 800–813, 2019.
  33. Natalino C., Schiano M., Giglio A.D., Wosinska L., Furdek M., Experimental study of machine-learning-based detection and identification of physical-layer attacks in optical networks, Journal of Lightwave Technology, 37(16), 4173–4182, 2019.
  34. Ray P.P., A survey on internet of things architectures, Journal of King Saud University–Computer and Information Sciences, 30(3), 291–319, 2018.
  35. Attaran M., The impact of 5G on the evolution of intelligent automation and industry digitization, Journal of Ambient Intelligence and Humanized Computing, 14(5), 5977–5993, 2023.
  36. Alshamrani A., Myneni S., Chowdhary A., Huang D., A survey on advanced persistent threats: Techniques, solutions, challenges, and research opportunities, IEEE Communications Surveys & Tutorials, 21(2), 1851–1877, 2019.
  37. Chaabouni N., Mosbah M., Zemmari A., Sauvignac C., Faruki P., Network intrusion detection for IoT security based on learning techniques, IEEE Communications Surveys & Tutorials, 21(3), 2671–2701, 2019.
  38. Bolla R., Bruschi R., Davoli F., Cucchietti F., Energy efficiency in the future internet: A survey of existing approaches and trends in energy-aware fixed network infrastructures, IEEE Communications Surveys & Tutorials, 13(2), 223–244, 2010.
  39. Negandhi P., Trivedi Y., Mangrulkar R., Emerging Research in Computing, Information, Communication and Applications (Chapter 43: Intrusion detection system using random forest on the NSL-KDD dataset), 27–28 July 2018, Karnataka, India.
  40. Sultana N., Chilamkurti N., Peng W., Alhadad R., Survey on SDN based network intrusion detection system using machine learning approaches, Peer-to-Peer Networking and Applications, 12, 493–501, 2019.
  41. https://www.opensourceforu.com/2020/05/machine-learning-and-deep-learning-a-perspective-on-the-future/, Accessed: May 13, 2020.
  42. Habtamu G.T., Kassahun A.Y., A systematic review of botnet detection system using deep learning and machine learning approaches, SSRN Electronic Journal, 4256438, 1–10, 2022.
  43. Boutaba R., Salahuddin M.A., Limam N., Ayoubi S., Shahriar N., Estrada-Solano F., Caicedo O.M., A comprehensive survey on machine learning for networking: Evolution, applications and research opportunities, Journal of Internet Services and Applications, 9(16), 1–99, 2018.
  44. Wang M., Cui Y., Wang X., Xiao S., Jiang J., Machine learning for networking: Workflow, advances and opportunities, IEEE Network, 32(2), 92–99, 2017.
  45. Bhutani G., Application of machine-learning based prediction techniques in wireless networks, International Journal of Communications Network and System Sciences, 7(5), 131–140, 2014.
  46. Usama M., Qadir J., Raza A., Arif H., Yau K.L.A., Elkhatib Y., Unsupervised machine learning for networking: Techniques, applications and research challenges, IEEE Access, 7, 65579–65615, 2019.
  47. Fang W., Tan X., Wilbur D., Application of intrusion detection technology in network safety based on machine learning, Safety Science, 124, 104604, 2020.
  48. Kulin M., Kazaz T., Poorter E.D., Moerman I., A survey on machine learning-based performance improvement of wireless networks: PHY MAC and network layer, Electronics, 10(3), 318, 2021.
  49. Rodrigues J.J.P.C., Neves P.A.C.S., A survey on IP-based wireless sensor network solutions, International Journal of Communication Systems, 23(8), 963–981, 2010.
  50. Alzahrani F.A., Fuzzy based decision-making approach for estimating usable-security of healthcare web applications, Computers Materials & Continua, 66(3), 2599–2625, 2021.
  51. Olalere M., Abdullah M.T., Mahmod R., Abdullah A., A review of bring your own device on security issues, SAGE Open, 5(2), 1–11, 2015.
  52. Ahmad I., Namal S., Ylianttila M., Gurtov A., Security in software defined networks: A survey, IEEE Communications Surveys & Tutorials, 17(4), 2317–2346, 2015.
  53. Cerf V.G., The fragmentation of the internet, IEEE Internet Computing, 20(1), 88-c3, 2016.
  54. Brar H.S., Kumar G., Cybercrimes: A proposed taxonomy and challenges, Journal of Computer Networks and Communications, 2018(D 1798659), 1–11, 2018.
  55. Fonseca O., Cunha Í., Fazzion E., Meira W., Silva B.A.D., Ferreira R.A., Katz-Bassett E., Identifying networks vulnerable to IP spoofing, IEEE Transactions on Network and Service Management, 18(3), 3170–3183, 2021.
  56. Toprak S., Yavuz A.G., Web application firewall based on anomaly detection using deep learning, Acta Infologica, 6(2), 219–244, 2022.
  57. Patcha A., Park J.M., An overview of anomaly detection techniques: Existing solutions and latest technological trends, Computer Networks, 51(12), 3448–3470, 2007.
  58. Praseed A., Thilagam P.S., DDoS attacks at the application layer: Challenges and research perspectives for safeguarding web applications, IEEE Communications Surveys & Tutorials, 21(1), 661–685, 2018.
  59. Chang R.K.C., Defending against flooding-based distributed denial-of-service attacks: A tutorial, IEEE Communications Magazine, 40(10), 42–51, 2002.
  60. https://global.ptsecurity.com/analytics/cybersecurity-threatscape-2022-rundown, Accessed: April 16, 2024.
  61. Alenezi M., Agrawal A., Kumar R., Khan R.A., Evaluating performance of web application security through a fuzzy based hybrid multi-criteria decision-making approach: Design tactics perspective, IEEE Access, 8, 25543–25556, 2020.
  62. Iskandar A., Tuasamu M.R.F., Syamsu S., Mansyur M., Listyorini T., Sallu S., Supriyono S., Saddhono K., Napitupulu D., Rahim R., Web based testing application security system using semantic comparison method, IOP Conference Series: Materials Science and Engineering, 420, 012122, 19–20 July 2018, Medan, Indonesia.
  63. Chora´s M., Kozik R., Machine learning techniques applied to detect cyber attacks on web applications, Logic Journal of IGPL, 23(1), 45–56, 2014.
  64. Santos R.J., Bernardino J., Vieira M., Approaches and challenges in database intrusion detection, SIGMOD Record, 43(3), 36–47, 2014.
  65. Alghawazi M., Alghazzawi D., Alarifi S., Detection of SQL injection attack using machine learning techniques: A systematic literature review, Journal of Cybersecurity and Privacy, 2(4), 764–777, 2022.
  66. Li X., Xue Y., A survey on server-side approaches to securing web applications, ACM Computing Surveys, 46(4), 1–29, 2014.
  67. Sabir B., Ullah F., Babar M.A., Gaire R., Machine learning for detecting data exfiltration: A review, ACM Computing Surveys, 54(3), 1–47, 2021.
  68. Chen Z., Liu J., Shen Y., Simsek M., Kantarci B., Mouftah H.T., Djukic P., Machine learning-enabled IoT security: Open issues and challenges under advanced persistent threats, ACM Computing Surveys, 55(5), 1–37, 2022.
  69. Ahmetoglu H., Das R., A comprehensive review on detection of cyber-attacks: Data sets, methods, challenges, and future research directions, Internet of Things, 20, 100615, 2022.
  70. Zhao J., Masood R., Seneviratne S., A review of computer vision methods in network security, IEEE Communications Surveys & Tutorials, 23(3), 1838–1878, 2021.
  71. Melacci S., Ciravegna G., Sotgiu A., Demontis A., Biggio B., Gori M., Roli F., Domain knowledge alleviates adversarial attacks in multi-label classifiers, IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(12), 9944–9959, 2021.
  72. Xu M., Zhang T., Li Z., Zhang D., InfoAT: Improving adversarial training using the information bottleneck principle, IEEE Transactions on Neural Networks and Learning Systems, 35(1), 1255–1264, 2022.
  73. Yener B., Gal T., Cybersecurity in the era of data science: Examining new adversarial models, IEEE Security & Privacy, 17, 46–53, 2019.
  74. Vitorino J., Oliveira N., Praça I., Adaptative perturbation patterns: Realistic adversarial learning for robust intrusion detection, Future Internet, 14(4), 108, 2022.
  75. Rajan M., Choksey M., Jose J., Runtime Detection of Time-Delay Security Attack in System-an-chip, 15th IEEE/ACM International Workshop on Network on Chip Architectures, 2 October 2022, Chicago, USA.
  76. Rudrabhatla C.K., A quantitative approach for estimating the scaling thresholds and step policies in a distributed microservice architecture, IEEE Access, 8, 180246–180254, 2020.
Language: English
Submitted on: Apr 16, 2024
|
Accepted on: Nov 28, 2024
|
Published on: Jan 29, 2026
Published by: Harran University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2026 Bolanle Eunice Oduleye, published by Harran University
This work is licensed under the Creative Commons Attribution 4.0 License.

AHEAD OF PRINT