Have a personal or library account? Click to login
A new modified conformal expansion method to some nonlinear conformal partial differential equations Cover

A new modified conformal expansion method to some nonlinear conformal partial differential equations

Open Access
|Dec 2025

Full Article

1
Introduction

Various constraints encountered in many real-world phenomena can only be modeled by using nonlinear partial differential (NPD) equations. Some phenomena arising in ocean sciences include modeling short-distance seismic activities such as earthquakes and acoustic waves in nuclear physics. Other equations are used to model phenomena in physical science [1], finance [2], and optical science [3]. As a result, obtaining analytical solutions to nonlinear conformable partial differential (NCPD) equations allows for a more thorough examination of the phenomena governed by these equations.

Researchers have extensively studied the NPD equations to obtain exact and explicit soliton solutions using various approaches. Among the notable approaches are as follows: the reductive perturbation technique [4], the tanh(η) expansion method [5], the GG \left({{{G'} \over G}} \right) expansion approach [6], the new extended auxiliary equation method [7], the improved Exp-function method [8], the double auxiliary equations approach [9, 10], the new generalized of e(−Φ(ξ))-expansion approach [11], the cotha (ξ) expansion approach [12], the generalized double auxiliary equation method [13,14,15], the F–expansion approach [16], the improved Jacobi elliptic function [17], the Cham method [18], the improved Cham method [19], the conformal fractional DξαGξGξ \left({{{D_\xi^\alpha G\left(\xi \right)} \over {G\left(\xi \right)}}} \right) -expansion approach [20], the Exp-function approach [21], the auxiliary equation approach [22], the extended auxiliary equation approach [23], the fractional sub-equation approach [24], the fractional Riccati equation rational expansion approach [25], the improved shooting method [26], and others [27,28,29,30].

This paper investigates the exact solutions to three different space-time nonlinear models with conformable such as the Whitham-Broer-Kaup equations [31] given as (1) Dtαu+uDxαu+Dxαv+βDx2αu=0,Dtαv+DxαuvβDx2αv+γDx3αu=0, \left\{{\matrix{{D_t^\alpha u + uD_x^\alpha u + D_x^\alpha v + \beta D_x^{2\alpha}u = 0,} \hfill \cr {D_t^\alpha v + D_x^\alpha \left({uv} \right) - \beta D_x^{2\alpha}v + \gamma D_x^{3\alpha}u = 0,} \hfill \cr}} \right. the Burgers equations [32] defined by (2) DtαhDx2αh+2hDxαh+pDxαhg=0,DtαgDx2αg+2gDxαg+qDxαhg=0, \left\{{\matrix{{D_t^\alpha h - D_x^{2\alpha}h + 2hD_x^\alpha h + pD_x^\alpha \left({hg} \right) = 0,} \hfill \cr {D_t^\alpha g - D_x^{2\alpha}g + 2gD_x^\alpha g + qD_x^\alpha \left({hg} \right) = 0,} \hfill \cr}} \right. and finally, the modified Korteweg-de Vries equations [33] read as (3) Dtαψ=12Dx3αψ3ψ2Dxαψ+32Dx2αψ+3Dxαψϕ3δDxαψ,Dtαϕ=Dx3αϕ3ϕDxαϕ3DxαψDxαϕ+3ψ2Dxαϕ+3δDxαϕ, \left\{{\matrix{{D_t^\alpha \psi = {1 \over 2}D_x^{3\alpha}\psi - 3{\psi^2}D_x^\alpha \psi + {3 \over 2}D_x^{2\alpha}\psi + 3D_x^\alpha \left({\psi \phi} \right) - 3\delta D_x^\alpha \psi,} \hfill \cr {D_t^\alpha \phi = - D_x^{3\alpha}\phi - 3\phi D_x^\alpha \phi - 3D_x^\alpha \psi D_x^\alpha \phi + 3{\psi^2}D_x^\alpha \phi + 3\delta D_x^\alpha \phi,} \hfill \cr}} \right. where α ∈ (0, 1]; δ, p, and q are real constants.

The paper is divided into four sections. Section 2 provides an overview of Katugampola's conformal derivative and explains the proposed modified conformal expansion method (MCEM). Section 3 demonstrates the efficiency of our method on the three above mentioned equations and provides some physical interpretations of the results. Section 4 offers a conclusive overview of the work.

2
The proposed MCEM

The preliminaries and definitions of the proposed approach are given as follows.

2.1
The Katugampola's conformal derivative

Among the various derivative definitions, we use Katugampola's derivative [34] that fulfills the linearity property and the quotient, the power, the Leibniz, and the chain rules. For a given real function g(t) where t > 0, we can define the derivative of a given order α ∈ (0, 1) by: Dαgt=limε0gteεtαgtε,t>0. {D^\alpha}\left(g \right)\left(t \right) = \mathop {{\rm{lim}}}\limits_{\varepsilon \to 0} {{g\left({t{e^{\varepsilon {t^{- \alpha}}}}} \right) - g\left(t \right)} \over \varepsilon},\forall t > 0.

If the limt→0+ Dα (g)(t) exists and the function g is α–differentiable in (0, a), a > 0, the following value can be defined: (4) Dαg0=limt0+Dαgt. {D^\alpha}\left(g \right)\left(0 \right) = \mathop {{\rm{lim}}}\limits_{t \to {0^ +}} {D^\alpha}\left(g \right)\left(t \right).

Let us consider two functions h, g that are α–differentiable, where α ∈ (0, 1]. Using the above definition, the following results can be stated [34]:

  • Dtαah+bgt=aDtαht+bDtαgt,a,b. D_t^\alpha \left({ah + bg} \right)\left(t \right) = aD_t^\alpha \left({h\left(t \right)} \right) + bD_t^\alpha \left({g\left(t \right)} \right),\forall a,b \in {\mathbb R}. .

  • Dtαtn=ntnα,n. D_t^\alpha \left({{t^n}} \right) = n{t^{n - \alpha }},\forall n \in {\mathbb R}.

  • Dtαc=0,ht=c. D_t^\alpha \left(c \right) = 0,\forall h\left(t \right) = c. .

  • Dtαhgt=gtDtαht+htDtαgt. D_t^\alpha \left({hg} \right)\left(t \right) = g\left(t \right)D_t^\alpha \left({h\left(t \right)} \right) + h\left(t \right)D_t^\alpha \left({g\left(t \right)} \right). .

  • Dtαhgt=gtDtαhthtDtαgtgt2. D_t^\alpha \left({{h \over g}} \right)\left(t \right) = {{g\left(t \right)D_t^\alpha \left({h\left(t \right)} \right) - h\left(t \right)D_t^\alpha \left({g\left(t \right)} \right)} \over {g{{\left(t \right)}^2}}}. .

  • Dtα1αtα=1. D_t^\alpha \left({{1 \over \alpha}{t^\alpha}} \right) = 1. .

  • Dtαhgt=DgαhgtDtαgt. D_t^\alpha \left({h \circ g} \right)\left(t \right) = D_g^\alpha h\left({g\left(t \right)} \right)D_t^\alpha g\left(t \right). .

2.2
Describing of MCEM

Consider the NCPD equation in Eq.(5), where t and x are independent. (5) Fu,ux,ut,Dxαu,Dtαu,=0,    α0,1, F\left({u,{u_x},{u_t},D_x^\alpha u,D_t^\alpha u, \cdots} \right) = 0,\;\;\;\;\alpha \in \left({0,1} \right], where u is an unknown function, Dxαu(resp.Dtαu) D_x^\alpha u\,({\rm{resp}}.\,D_t^\alpha u) is the Katugampola's derivative of u of order α in respect to x (resp. t), and F is a polynomial in u.

The proposed modified conformal DξαGξGξ \left({{{D_\xi^\alpha G\left(\xi \right)} \over {G\left(\xi \right)}}} \right) expansion method to solve Eq.(5) is defined in five steps:

  • Step 1. Use the transformation given in Eq.(6) to transform the CPD equation into NCD equation. (6) ux,t=uξ,        ξ=k1αxα+k2αtα, u\left({x,t} \right) = u\left(\xi \right),\;\;\;\;\;\;\;\;\xi = {{{k_1}} \over \alpha}{x^\alpha} + {{{k_2}} \over \alpha}{t^\alpha}, where k1, k2 ∈ ℝ will be determined later. Hence, Eq.(5) becomes a nonlinear ordinary differential equation with the new variable ξ. (7) Nu,Dξαu,Dξ2αu,Dξ3αu,=0, N\left({u,D_\xi^\alpha u,D_\xi^{2\alpha}u,D_\xi^{3\alpha}u, \cdots} \right) = 0, where Dξα D_\xi^\alpha stands for differentiation with respect to ξ in the sense of Katugampola.

  • Step 2. Balance the term having the high-level derivative with nonlinear terms of equation (7) to find the value of m ∈ ℕ − {0} using the relation (8). (8) Degreeupdqudξqs=mp+sm+q. Degree\left[ {{u^p}{{\left({{{{d^q}u} \over {d{\xi^q}}}} \right)}^s}} \right] = mp + s\left({m + q} \right).

  • Step 3. Suppose that solutions of equation (7) have the form given in Eq.(9): (9) u(ξ)=i=mmliDξαGξGξi, u(\xi) = \mathop \sum \limits_{i = - m}^m {l_i}{\left({{{D_\xi^\alpha G\left(\xi \right)} \over {G\left(\xi \right)}}} \right)^i}, where, li ∈ ℝ, ∀(i = −m, …, m) and DξαGξGξ \left({{{D_\xi^\alpha G\left(\xi \right)} \over {G\left(\xi \right)}}} \right) satisfies Eq.(10). (10) DξαGξGξ'=DξαGξGξ2λDξαGξGξμ. {\left({{{D_\xi^\alpha G\left(\xi \right)} \over {G\left(\xi \right)}}} \right)^{'}} = - {\left({{{D_\xi^\alpha G\left(\xi \right)} \over {G\left(\xi \right)}}} \right)^2} - \lambda \left({{{D_\xi^\alpha G\left(\xi \right)} \over {G\left(\xi \right)}}} \right) - \mu. Hence, Eq.(10) has several solutions defined as follows: (11) DξαGξGξ=λ2+α2λ24μα2C1cosh12λ24μα2ξα+C2sinh12λ24μα2ξαC1sinh12λ24μα2ξα+C2cosh12λ24μα2ξα;    λ24μ>0,λ2+α24μλ2α2C1cos124μλ2α2ξαC2sin124μλ2α2ξαC1sin124μλ2α2ξα+C2cos124μλ2α2ξα;    λ24μ<0,λ2+C2αC1+C2ξα;    λ24μ=0.     {{D_\xi^\alpha G\left(\xi \right)} \over {G\left(\xi \right)}} = \left\{{\matrix{{- {\lambda \over 2} + {\alpha \over 2}\sqrt {{{\left({{\lambda^2} - 4\mu} \right)} \over {{\alpha^2}}}} \left({{{{C_1}{\rm{cosh}}\left({{1 \over 2}\sqrt {{{\left({{\lambda^2} - 4\mu} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right) + {C_2}{\rm{sinh}}\left({{1 \over 2}\sqrt {{{\left({{\lambda^2} - 4\mu} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right)} \over {{C_1}{\rm{sinh}}\left({{1 \over 2}\sqrt {{{\left({{\lambda^2} - 4\mu} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right) + {C_2}{\rm{cosh}}\left({{1 \over 2}\sqrt {{{\left({{\lambda^2} - 4\mu} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right)}}} \right);\;\;\;\;\left({{\lambda^2} - 4\mu} \right) > 0,} \hfill \cr {- {\lambda \over 2} + {\alpha \over 2}\sqrt {{{\left({4\mu - {\lambda^2}} \right)} \over {{\alpha^2}}}} \left({{{{C_1}{\rm{cos}}\left({{1 \over 2}\sqrt {{{\left({4\mu - {\lambda^2}} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right) - {C_2}{\rm{sin}}\left({{1 \over 2}\sqrt {{{\left({4\mu - {\lambda^2}} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right)} \over {{C_1}{\rm{sin}}\left({{1 \over 2}\sqrt {{{\left({4\mu - {\lambda^2}} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right) + {C_2}{\rm{cos}}\left({{1 \over 2}\sqrt {{{\left({4\mu - {\lambda^2}} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right)}}} \right);\;\;\;\;\left({{\lambda^2} - 4\mu} \right) < 0,} \hfill \cr {- {\lambda \over 2} + {{{C_2}\alpha} \over {{C_1} + {C_2}{\xi^\alpha}}};\;\;\;\;\left({{\lambda^2} - 4\mu} \right) = 0.\;\;\;\;} \hfill \cr}} \right.

  • Step 4. Find the system of equations for C1,C2, μ, λ, k1, k2, and li (i = −m, …, m) as follows: replace Eq.(9) in equation (7), use equation (10), and finally set coefficients of DξαGξGξi {\left({{{D_\xi^\alpha G\left(\xi \right)} \over {G\left(\xi \right)}}} \right)^i} to zero.

  • Step 5. Resolve the obtained system, then replace the solutions of Eq.(10), all coefficients C1,C2, μ, λ, k1, k2, and li (i = −m, …, m) into Eq.(9), to get the solutions of the original Eq.(5).

3
Applications

The ability of the method to generate exact solutions is assessed using three different nonlinear fractional partial differential equations. Subsection 3.1 shows the performance of the method on the Whitham-Broer-Kaup equation. Subsection 3.2 presents the application of MCEM on the coupled Burgers equations. Finally, subsection 3.3 provides the efficiency of the method on the coupled modified Korteweg-de Vries (mKdv) equations.

3.1
The Whitham-Broer-Kaup equation

The governing equations in the conformal derivative are given by Eq.(12), in which β, γ are constants, u and v are functions of (x,t), and α ∈ (0, 1]. (12) Dtαu+uDxαu+Dxαv+βDx2αu=0,Dtαv+DxαuvβDx2αv+γDx3αu=0. \left\{{\matrix{{D_t^\alpha u + uD_x^\alpha u + D_x^\alpha v + \beta D_x^{2\alpha}u = 0,} \hfill \cr {D_t^\alpha v + D_x^\alpha \left({uv} \right) - \beta D_x^{2\alpha}v + \gamma D_x^{3\alpha}u = 0.} \hfill \cr}} \right.

By employing the traveling wave transformation given in Eq.(13): (13) vx,t=vξ,ux,t=uξ,ξ=k1xαα+k2tαα, v\left({x,t} \right) = v\left(\xi \right),u\left({x,t} \right) = u\left(\xi \right),\xi = {{{k_1}{x^\alpha}} \over \alpha} + {{{k_2}{t^\alpha}} \over \alpha}, where k1, k2 ∈ ℝ, Eq.(12) becomes a nonlinear ordinary differential equation given in Eq.(14): (14) βk12Dξ2αu+k1uDξαu+k1Dξαv+k2Dξαu=0,γk13Dξ3αuβk12Dξ2αv+k1uDξαv+k1vDξαu+k2Dξαv=0. \left\{{\matrix{{\beta k_1^2D_\xi^{2\alpha}u + {k_1}uD_\xi^\alpha u + {k_1}D_\xi^\alpha v + {k_2}D_\xi^\alpha u = 0,} \hfill \cr {\gamma k_1^3D_\xi^{3\alpha}u - \beta k_1^2D_\xi^{2\alpha}v + {k_1}uD_\xi^\alpha v + {k_1}vD_\xi^\alpha u + {k_2}D_\xi^\alpha v = 0.} \hfill \cr}} \right.

By balancing the order of Dξ2αu D_\xi^{2\alpha}u and uDξαu(resp.Dξ3αuanduDξαv) uD_\xi^\alpha u\,({\rm{resp}}.\,D_\xi^{3\alpha}u\,{\rm{and}}\,uD_\xi^\alpha v) in the first (resp. second) equation of Eq.(14), we find n = 1 and m = 2. Hence, the solutions of Eq.(14) are given by Eq.(15), such that αi ∈ ℝ (i = 0, 1, 2) and β j ∈ ℝ (j = 0, 1, 2, 3, 4) will be obtained later. (15) uξ=α0+α1DξαGξGξ+α2DξαGξGξ1,vξ=β0+β1DξαGξGξ+β2DξαGξGξ1+β3DξαGξGξ2+β4DξαGξGξ2. \left\{{\matrix{{u\left(\xi \right) = {\alpha_0} + {\alpha_1}\left({{{D_\xi^\alpha G\left(\xi \right)} \over {G\left(\xi \right)}}} \right) + {\alpha_2}{{\left({{{D_\xi^\alpha G\left(\xi \right)} \over {G\left(\xi \right)}}} \right)}^{- 1}},} \hfill \cr {v\left(\xi \right) = {\beta_0} + {\beta_1}\left({{{D_\xi^\alpha G\left(\xi \right)} \over {G\left(\xi \right)}}} \right) + {\beta_2}{{\left({{{D_\xi^\alpha G\left(\xi \right)} \over {G\left(\xi \right)}}} \right)}^{- 1}} + {\beta_3}{{\left({{{D_\xi^\alpha G\left(\xi \right)} \over {G\left(\xi \right)}}} \right)}^2} + {\beta_4}{{\left({{{D_\xi^\alpha G\left(\xi \right)} \over {G\left(\xi \right)}}} \right)}^{- 2}}.} \hfill \cr}} \right.

The left side of Eq.(14) is transformed to polynomials in DξαGξGξj {\left({{{D_\xi^\alpha G\left(\xi \right)} \over {G\left(\xi \right)}}} \right)^j} , (j = 0, ±1, ±2, …) by using Eq.(15). As a result, we get a system of equations for k1, k2, αi(i = 0, 1, 2), and βj(j = 0, 1, 2, 3, 4), by grouping the coefficients of these polynomials and setting them to zero. Maple software is used to generate three cases:

Case 1: α0=λk12β2+γk2β2+γk1β2+γ,α1=0,α2=2μk1β2+γ,k1=k1,k2=k2,β0=2μk12ββ2+γ+β2+γ,β1=0,β2=λβ0,β3=0,β4=μβ0. \left\{{\matrix{{{\alpha_0} = {{\lambda k_1^2\left({{\beta^2} + \gamma} \right) - {k_2}\sqrt {{\beta^2} + \gamma}} \over {{k_1}\sqrt {{\beta^2} + \gamma}}},{\alpha_1} = 0,{\alpha_2} = 2\mu {k_1}\sqrt {{\beta^2} + \gamma},{k_1} = {k_1},{k_2} = {k_2},} \hfill \cr {{\beta_0} = - 2\mu k_1^2\left({\beta \sqrt {{\beta^2} + \gamma} + \left({{\beta^2} + \gamma} \right)} \right),{\beta_1} = 0,{\beta_2} = \lambda {\beta_0},{\beta_3} = 0,{\beta_4} = \mu {\beta_0}.} \hfill \cr}} \right. hence (16) u1ξ=λk12β2+γk2β2+γk1β2+γ+2μk1β2+γDξαGξGξ1,v1ξ=2μk12ββ2+γ+β2+γ+λβ0DξαGξGξ1+μβ0DξαGξGξ2. \left\{{\matrix{{{u_1}\left(\xi \right) = {{\lambda k_1^2\left({{\beta^2} + \gamma} \right) - {k_2}\sqrt {{\beta^2} + \gamma}} \over {{k_1}\sqrt {{\beta^2} + \gamma}}} + 2\mu {k_1}\sqrt {{\beta^2} + \gamma} {{\left({{{D_\xi^\alpha G\left(\xi \right)} \over {G\left(\xi \right)}}} \right)}^{- 1}},} \hfill \cr {{v_1}\left(\xi \right) = - 2\mu k_1^2\left({\beta \sqrt {{\beta^2} + \gamma} + \left({{\beta^2} + \gamma} \right)} \right) + \lambda {\beta_0}{{\left({{{D_\xi^\alpha G\left(\xi \right)} \over {G\left(\xi \right)}}} \right)}^{- 1}} + \mu {\beta_0}{{\left({{{D_\xi^\alpha G\left(\xi \right)} \over {G\left(\xi \right)}}} \right)}^{- 2}}.} \hfill \cr}} \right.

Case 2: α0=λk12β2+γk2β2+γk1β2+γ,α1=2k1β2+γ,α2=0,k1=k1,k2=k2,β0=μβ3,β1=λβ3,β2=0,β3=2k12ββ2+γβ2+γ,β4=0. \left\{{\matrix{{{\alpha_0} = {{\lambda k_1^2\left({{\beta^2} + \gamma} \right) - {k_2}\sqrt {{\beta^2} + \gamma}} \over {{k_1}\sqrt {{\beta^2} + \gamma}}},{\alpha_1} = 2{k_1}\sqrt {{\beta^2} + \gamma},{\alpha_2} = 0,{k_1} = {k_1},{k_2} = {k_2},} \hfill \cr {{\beta_0} = \mu {\beta_3},{\beta_1} = \lambda {\beta_3},{\beta_2} = 0,{\beta_3} = 2k_1^2\left({\beta \sqrt {{\beta^2} + \gamma} - \left({{\beta^2} + \gamma} \right)} \right),{\beta_4} = 0.} \hfill \cr}} \right. then (17) u2ξ=λk12β2+γk2β2+γk1β2+γ+2k1β2+γDξαGξGξ,v2ξ=μβ3+λβ3DξαGξGξ+2k12ββ2+γβ2+γDξαGξGξ2. \left\{{\matrix{{{u_2}\left(\xi \right) = {{\lambda k_1^2\left({{\beta^2} + \gamma} \right) - {k_2}\sqrt {{\beta^2} + \gamma}} \over {{k_1}\sqrt {{\beta^2} + \gamma}}} + 2{k_1}\sqrt {{\beta^2} + \gamma} \left({{{D_\xi^\alpha G\left(\xi \right)} \over {G\left(\xi \right)}}} \right),} \hfill \cr {{v_2}\left(\xi \right) = \mu {\beta_3} + \lambda {\beta_3}\left({{{D_\xi^\alpha G\left(\xi \right)} \over {G\left(\xi \right)}}} \right) + 2k_1^2\left({\beta \sqrt {{\beta^2} + \gamma} - \left({{\beta^2} + \gamma} \right)} \right){{\left({{{D_\xi^\alpha G\left(\xi \right)} \over {G\left(\xi \right)}}} \right)}^2}.} \hfill \cr}} \right.

Case 3: α0=λk12β2+γk2β2+γk1β2+γ,α1=2k1β2+γ,α2=μα1,k1=k1,k2=k2,β0=0,β1=λβ3,β2=2λμk12ββ2+γ+β2+γ,β3=2k12ββ2+γβ2+γ,β4=μλβ2. \left\{{\matrix{{{\alpha_0} = {{\lambda k_1^2\left({{\beta^2} + \gamma} \right) - {k_2}\sqrt {{\beta^2} + \gamma}} \over {{k_1}\sqrt {{\beta^2} + \gamma}}},{\alpha_1} = 2{k_1}\sqrt {{\beta^2} + \gamma},{\alpha_2} = \mu {\alpha_1},{k_1} = {k_1},{k_2} = {k_2},{\beta_0} = 0,{\beta_1} = \lambda {\beta_3},} \hfill \cr {{\beta_2} = - 2\lambda \mu k_1^2\left({\beta \sqrt {{\beta^2} + \gamma} + \left({{\beta^2} + \gamma} \right)} \right),{\beta_3} = 2k_1^2\left({\beta \sqrt {{\beta^2} + \gamma} - \left({{\beta^2} + \gamma} \right)} \right),{\beta_4} = {\mu \over \lambda}{\beta_2}.} \hfill \cr}} \right. therefore (18) u3ξ=λk12β2+γk2β2+γk1β2+γ+2k1β2+γDξαGξGξ+μα1DξαGξGξ1,v3ξ=λβ3DξαGξGξ2λμk12ββ2+γ+β2+γDξαGξGξ1+2k12ββ2+γβ2+γDξαGξGξ2+μλβ2DξαGξGξ2. \left\{{\matrix{{{u_3}\left(\xi \right) = {{\lambda k_1^2\left({{\beta^2} + \gamma} \right) - {k_2}\sqrt {{\beta^2} + \gamma}} \over {{k_1}\sqrt {{\beta^2} + \gamma}}} + 2{k_1}\sqrt {{\beta^2} + \gamma} \left({{{D_\xi^\alpha G\left(\xi \right)} \over {G\left(\xi \right)}}} \right) + \mu {\alpha_1}{{\left({{{D_\xi^\alpha G\left(\xi \right)} \over {G\left(\xi \right)}}} \right)}^{- 1}},} \hfill \cr {{v_3}\left(\xi \right) = \lambda {\beta_3}\left({{{D_\xi^\alpha G\left(\xi \right)} \over {G\left(\xi \right)}}} \right) - 2\lambda \mu k_1^2\left({\beta \sqrt {{\beta^2} + \gamma} + \left({{\beta^2} + \gamma} \right)} \right){{\left({{{D_\xi^\alpha G\left(\xi \right)} \over {G\left(\xi \right)}}} \right)}^{- 1}} +} \hfill \cr {2k_1^2\left({\beta \sqrt {{\beta^2} + \gamma} - \left({{\beta^2} + \gamma} \right)} \right){{\left({{{D_\xi^\alpha G\left(\xi \right)} \over {G\left(\xi \right)}}} \right)}^2} + {\mu \over \lambda}{\beta_2}{{\left({{{D_\xi^\alpha G\left(\xi \right)} \over {G\left(\xi \right)}}} \right)}^{- 2}}.} \hfill \cr}} \right.

Using the solutions given by Eq.(11), the Whitham-Broer-Kaup equation has the following new exact solutions:

Case (3.1). (λ2 − 4μ) > 0, u3.1ξ=λk12β2+γk2β2+γk1β2+γ+2k1β2+γλ2+α2λ24μα2C1cosh12λ24μα2ξα+C2sinh12λ24μα2ξαC1sinh12λ24μα2ξα+C2cosh12λ24μα2ξα+μα1λ2+α2λ24μα2C1cosh12λ24μα2ξα+C2sinh12λ24μα2ξαC1sinh12λ24μα2ξα+C2cosh12λ24μα2ξα1,v3.1ξ=λβ3λ2+α2λ24μα2C1cosh12λ24μα2ξα+C2sinh12λ24μα2ξαC1sinh12λ24μα2ξα+C2cosh12λ24μα2ξα2λμk12ββ2+γ+β2+γλ2+α2λ24μα2C1cosh12λ24μα2ξα+C2sinh12λ24μα2ξαC1sinh12λ24μα2ξα+C2cosh12λ24μα2ξα+2k12ββ2+γβ2+γ×λ2+α2λ24μα2C1cosh12λ24μα2ξα+C2sinh12λ24μα2ξαC1sinh12λ24μα2ξα+C2cosh12λ24μα2ξα2+μβ2λλ2+α2λ24μα2C1cosh12λ24μα2ξα+C2sinh12λ24μα2ξαC1sinh12λ24μα2ξα+C2cosh12λ24μα2ξα2,ξ=k1αxα+k2αtα. \matrix{{{u_{3.1}}\left(\xi \right) = \left({\matrix{{\left({{{\lambda k_1^2\left({{\beta^2} + \gamma} \right) - {k_2}\sqrt {{\beta^2} + \gamma}} \over {{k_1}\sqrt {{\beta^2} + \gamma}}}} \right)} \hfill \cr {+ 2{k_1}\sqrt {{\beta^2} + \gamma} \left({- {\lambda \over 2} + {\alpha \over 2}\sqrt {{{\left({{\lambda^2} - 4\mu} \right)} \over {{\alpha^2}}}} \left({{{{C_1}\cosh \left({{1 \over 2}\sqrt {{{\left({{\lambda^2} - 4\mu} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right) + {C_2}\sinh \left({{1 \over 2}\sqrt {{{\left({{\lambda^2} - 4\mu} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right)} \over {{C_1}\sinh \left({{1 \over 2}\sqrt {{{\left({{\lambda^2} - 4\mu} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right) + {C_2}\cosh \left({{1 \over 2}\sqrt {{{\left({{\lambda^2} - 4\mu} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right)}}} \right)} \right)} \hfill \cr {+ \mu {\alpha_1}{{\left({- {\lambda \over 2} + {\alpha \over 2}\sqrt {{{\left({{\lambda^2} - 4\mu} \right)} \over {{\alpha^2}}}} \left({{{{C_1}\cosh \left({{1 \over 2}\sqrt {{{\left({{\lambda^2} - 4\mu} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right) + {C_2}\sinh \left({{1 \over 2}\sqrt {{{\left({{\lambda^2} - 4\mu} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right)} \over {{C_1}\sinh \left({{1 \over 2}\sqrt {{{\left({{\lambda^2} - 4\mu} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right) + {C_2}\cosh \left({{1 \over 2}\sqrt {{{\left({{\lambda^2} - 4\mu} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right)}}} \right)} \right)}^{- 1}}} \hfill \cr}} \right),} \cr {{v_{3.1}}\left(\xi \right) = \left({\matrix{{\lambda {\beta_3}\left({- {\lambda \over 2} + {\alpha \over 2}\sqrt {{{\left({{\lambda^2} - 4\mu} \right)} \over {{\alpha^2}}}} \left({{{{C_1}\cosh \left({{1 \over 2}\sqrt {{{\left({{\lambda^2} - 4\mu} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right) + {C_2}\sinh \left({{1 \over 2}\sqrt {{{\left({{\lambda^2} - 4\mu} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right)} \over {{C_1}\sinh \left({{1 \over 2}\sqrt {{{\left({{\lambda^2} - 4\mu} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right) + {C_2}\cosh \left({{1 \over 2}\sqrt {{{\left({{\lambda^2} - 4\mu} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right)}}} \right)} \right)} \hfill \cr {- {{2\lambda \mu k_1^2\left({\beta \sqrt {{\beta^2} + \gamma} + \left({{\beta^2} + \gamma} \right)} \right)} \over {\left({- {\lambda \over 2} + {\alpha \over 2}\sqrt {{{\left({{\lambda^2} - 4\mu} \right)} \over {{\alpha^2}}}} \left({{{{C_1}\cosh \left({{1 \over 2}\sqrt {{{\left({{\lambda^2} - 4\mu} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right) + {C_2}\sinh \left({{1 \over 2}\sqrt {{{\left({{\lambda^2} - 4\mu} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right)} \over {{C_1}\sinh \left({{1 \over 2}\sqrt {{{\left({{\lambda^2} - 4\mu} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right) + {C_2}\cosh \left({{1 \over 2}\sqrt {{{\left({{\lambda^2} - 4\mu} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right)}}} \right)} \right)}}} \hfill \cr {+ 2k_1^2\left({\beta \sqrt {{\beta^2} + \gamma} - \left({{\beta^2} + \gamma} \right)} \right)} \hfill \cr {\times {{\left({- {\lambda \over 2} + {\alpha \over 2}\sqrt {{{\left({{\lambda^2} - 4\mu} \right)} \over {{\alpha^2}}}} \left({{{{C_1}\cosh \left({{1 \over 2}\sqrt {{{\left({{\lambda^2} - 4\mu} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right) + {C_2}\sinh \left({{1 \over 2}\sqrt {{{\left({{\lambda^2} - 4\mu} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right)} \over {{C_1}\sinh \left({{1 \over 2}\sqrt {{{\left({{\lambda^2} - 4\mu} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right) + {C_2}\cosh \left({{1 \over 2}\sqrt {{{\left({{\lambda^2} - 4\mu} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right)}}} \right)} \right)}^2}} \hfill \cr {+ {{\mu {\beta_2}} \over {\lambda {{\left({- {\lambda \over 2} + {\alpha \over 2}\sqrt {{{\left({{\lambda^2} - 4\mu} \right)} \over {{\alpha^2}}}} \left({{{{C_1}\cosh \left({{1 \over 2}\sqrt {{{\left({{\lambda^2} - 4\mu} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right) + {C_2}\sinh \left({{1 \over 2}\sqrt {{{\left({{\lambda^2} - 4\mu} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right)} \over {{C_1}\sinh \left({{1 \over 2}\sqrt {{{\left({{\lambda^2} - 4\mu} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right) + {C_2}\cosh \left({{1 \over 2}\sqrt {{{\left({{\lambda^2} - 4\mu} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right)}}} \right)} \right)}^2}}}} \hfill \cr}} \right),} \cr {\xi = \left({{{{k_1}} \over \alpha}} \right){x^\alpha} + \left({{{{k_2}} \over \alpha}} \right){t^\alpha}.} \cr}

Case (3.2). (λ2 − 4μ) < 0, u3.2ξ=λk12β2+γk2β2+γk1β2+γ+2k1β2+γλ2+α24μλ2α2C1cos124μλ2α2ξαC2sin124μλ2α2ξαC1sin124μλ2α2ξα+C2cos124μλ2α2ξα+μα1λ2+α24μλ2α2C1cos124μλ2α2ξαC2sin124μλ2α2ξαC1sin124μλ2α2ξα+C2cos124μλ2α2ξα1,v3.2ξ=λβ3λ2+α24μλ2α2C1cos124μλ2α2ξαC2sin124μλ2α2ξαC1sin124μλ2α2ξα+C2cos124μλ2α2ξα2λμk12ββ2+γ+β2+γλ2+α24μλ2α2C1cos124μλ2α2ξαC2sin124μλ2α2ξαC1sin124μλ2α2ξα+C2cos124μλ2α2ξα+2k12ββ2+γβ2+γ×λ2+α24μλ2α2C1cos124μλ2α2ξαC2sin124μλ2α2ξαC1sin124μλ2α2ξα+C2cos124μλ2α2ξα2+μβ2λλ2+α24μλ2α2C1cos124μλ2α2ξαC2sin124μλ2α2ξαC1sin124μλ2α2ξα+C2cos124μλ2α2ξα2,ξ=k1αxα+k2αtα. \matrix{{{u_{3.2}}\left(\xi \right) = \left({\matrix{{\left({{{\lambda k_1^2\left({{\beta^2} + \gamma} \right) - {k_2}\sqrt {{\beta^2} + \gamma}} \over {{k_1}\sqrt {{\beta^2} + \gamma}}}} \right)} \hfill \cr {+ 2{k_1}\sqrt {{\beta^2} + \gamma} \left({- {\lambda \over 2} + {\alpha \over 2}\sqrt {{{\left({4\mu - {\lambda^2}} \right)} \over {{\alpha^2}}}} \left({{{{C_1}\cos \left({{1 \over 2}\sqrt {{{\left({4\mu - {\lambda^2}} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right) - {C_2}\sin \left({{1 \over 2}\sqrt {{{\left({4\mu - {\lambda^2}} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right)} \over {{C_1}\sin \left({{1 \over 2}\sqrt {{{\left({4\mu - {\lambda^2}} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right) + {C_2}\cos \left({{1 \over 2}\sqrt {{{\left({4\mu - {\lambda^2}} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right)}}} \right)} \right)} \hfill \cr {+ \mu {\alpha_1}{{\left({- {\lambda \over 2} + {\alpha \over 2}\sqrt {{{\left({4\mu - {\lambda^2}} \right)} \over {{\alpha^2}}}} \left({{{{C_1}\cos \left({{1 \over 2}\sqrt {{{\left({4\mu - {\lambda^2}} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right) - {C_2}\sin \left({{1 \over 2}\sqrt {{{\left({4\mu - {\lambda^2}} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right)} \over {{C_1}\sin \left({{1 \over 2}\sqrt {{{\left({4\mu - {\lambda^2}} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right) + {C_2}\cos \left({{1 \over 2}\sqrt {{{\left({4\mu - {\lambda^2}} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right)}}} \right)} \right)}^{- 1}}} \hfill \cr}} \right),} \cr {{v_{3.2}}\left(\xi \right) = \left({\matrix{{\lambda {\beta_3}\left({- {\lambda \over 2} + {\alpha \over 2}\sqrt {{{\left({4\mu - {\lambda^2}} \right)} \over {{\alpha^2}}}} \left({{{{C_1}\cos \left({{1 \over 2}\sqrt {{{\left({4\mu - {\lambda^2}} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right) - {C_2}\sin \left({{1 \over 2}\sqrt {{{\left({4\mu - {\lambda^2}} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right)} \over {{C_1}\sin \left({{1 \over 2}\sqrt {{{\left({4\mu - {\lambda^2}} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right) + {C_2}\cos \left({{1 \over 2}\sqrt {{{\left({4\mu - {\lambda^2}} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right)}}} \right)} \right)} \hfill \cr {- {{2\lambda \mu k_1^2\left({\beta \sqrt {{\beta^2} + \gamma} + \left({{\beta^2} + \gamma} \right)} \right)} \over {\left({- {\lambda \over 2} + {\alpha \over 2}\sqrt {{{\left({4\mu - {\lambda^2}} \right)} \over {{\alpha^2}}}} \left({{{{C_1}\cos \left({{1 \over 2}\sqrt {{{\left({4\mu - {\lambda^2}} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right) - {C_2}\sin \left({{1 \over 2}\sqrt {{{\left({4\mu - {\lambda^2}} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right)} \over {{C_1}\sin \left({{1 \over 2}\sqrt {{{\left({4\mu - {\lambda^2}} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right) + {C_2}\cos \left({{1 \over 2}\sqrt {{{\left({4\mu - {\lambda^2}} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right)}}} \right)} \right)}}} \hfill \cr {+ 2k_1^2\left({\beta \sqrt {{\beta^2} + \gamma} - \left({{\beta^2} + \gamma} \right)} \right)} \hfill \cr {\times {{\left({- {\lambda \over 2} + {\alpha \over 2}\sqrt {{{\left({4\mu - {\lambda^2}} \right)} \over {{\alpha^2}}}} \left({{{{C_1}\cos \left({{1 \over 2}\sqrt {{{\left({4\mu - {\lambda^2}} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right) - {C_2}\sin \left({{1 \over 2}\sqrt {{{\left({4\mu - {\lambda^2}} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right)} \over {{C_1}\sin \left({{1 \over 2}\sqrt {{{\left({4\mu - {\lambda^2}} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right) + {C_2}\cos \left({{1 \over 2}\sqrt {{{\left({4\mu - {\lambda^2}} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right)}}} \right)} \right)}^2}} \hfill \cr {+ {{\mu {\beta_2}} \over {\lambda {{\left({- {\lambda \over 2} + {\alpha \over 2}\sqrt {{{\left({4\mu - {\lambda^2}} \right)} \over {{\alpha^2}}}} \left({{{{C_1}\cos \left({{1 \over 2}\sqrt {{{\left({4\mu - {\lambda^2}} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right) - {C_2}\sin \left({{1 \over 2}\sqrt {{{\left({4\mu - {\lambda^2}} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right)} \over {{C_1}\sin \left({{1 \over 2}\sqrt {{{\left({4\mu - {\lambda^2}} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right) + {C_2}\cos \left({{1 \over 2}\sqrt {{{\left({4\mu - {\lambda^2}} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right)}}} \right)} \right)}^2}}}} \hfill \cr}} \right),} \cr {\xi = \left({{{{k_1}} \over \alpha}} \right){x^\alpha} + \left({{{{k_2}} \over \alpha}} \right){t^\alpha}.} \cr}

Case (3.3). (λ2 − 4μ) = 0, u3.3ξ=λk12β2+γk2β2+γk1β2+γ+2k1β2+γλ2+C2αC1+C2ξα+μα1λ2+C2αC1+C2ξα1,v3.3ξ=λβ3λ2+C2αC1+C2ξα2λμk12ββ2+γ+β2+γλ2+C2αC1+C2ξα1+2k12ββ2+γβ2+γλ2+C2αC1+C2ξα2+14λβ2λ2+C2αC1+C2ξα2,ξ=k1αxα+k2αtα. \left\{{\matrix{{{u_{3.3}}\left(\xi \right) = \left({{{\lambda k_1^2\left({{\beta^2} + \gamma} \right) - {k_2}\sqrt {{\beta^2} + \gamma}} \over {{k_1}\sqrt {{\beta^2} + \gamma}}}} \right) + 2{k_1}\sqrt {{\beta^2} + \gamma} \left({- {\lambda \over 2} + {{{C_2}\alpha} \over {{C_1} + {C_2}{\xi^\alpha}}}} \right) + \mu {\alpha_1}{{\left({- {\lambda \over 2} + {{{C_2}\alpha} \over {{C_1} + {C_2}{\xi^\alpha}}}} \right)}^{- 1}},} \hfill \cr {{v_{3.3}}\left(\xi \right) = \left({\matrix{{\lambda {\beta_3}\left({- {\lambda \over 2} + {{{C_2}\alpha} \over {{C_1} + {C_2}{\xi^\alpha}}}} \right) - 2\lambda \mu k_1^2\left({\beta \sqrt {{\beta^2} + \gamma} + \left({{\beta^2} + \gamma} \right)} \right){{\left({- {\lambda \over 2} + {{{C_2}\alpha} \over {{C_1} + {C_2}{\xi^\alpha}}}} \right)}^{- 1}}} \hfill \cr {+ 2k_1^2\left({\beta \sqrt {{\beta^2} + \gamma} - \left({{\beta^2} + \gamma} \right)} \right){{\left({- {\lambda \over 2} + {{{C_2}\alpha} \over {{C_1} + {C_2}{\xi^\alpha}}}} \right)}^2} + {1 \over 4}\lambda {\beta_2}{{\left({- {\lambda \over 2} + {{{C_2}\alpha} \over {{C_1} + {C_2}{\xi^\alpha}}}} \right)}^{- 2}}} \hfill \cr}} \right),} \hfill \cr {\xi = \left({{{{k_1}} \over \alpha}} \right){x^\alpha} + \left({{{{k_2}} \over \alpha}} \right){t^\alpha}.} \hfill \cr}} \right. The remaining solutions for Case 1 and Case 2 can be obtained analogously.

Figures (1,2,3) are the profiles of some solutions that are obtained as u3.1 (ξ), v3.1 (ξ), u3.2 (ξ), v3.2 (ξ), u3.3 (ξ), and v3.3 (ξ). These profiles were plotted using Maple 2022, providing a clearer understanding of the characteristics of each solution. The results show fascinating shapes of singular, periodic, and bright bell-shaped solitons for different parameters.

Fig. 1

(a) The 3D plot of u3.1 (ξ) when λ = 5, μ = 0.01, C1 = −5, C2 = −11, β = 6, γ = 1, k1 = 1; k2 = −1 and α=15 \alpha = {1 \over 5} , showcasing it as a multi-soliton solution, (b) The 3D plot of v3.1 (ξ)) when λ = 3, μ=16 \mu = {1 \over 6} , C1 = 2, C2 = 3, β = 11, γ = −3, k1 = 1; k2 = 2, and α = 1, showcasing it as a bright soliton solution.

Fig. 2

(a) The 3D plot of u3.2 (ξ) when λ = 0.1, μ = 1, C1 = −5, C2 = −11, β = 63, γ = 1, k1 = 1; k2 = −1 and α=12 \alpha = {1 \over 2} , showcasing it as a kink wave solution, (b) The 3D plot of v3.2 (ξ) when λ = 0.3, μ = 111, C1 = 3, C2 = 2, β = −2, γ = −1, k1 = 1, k2 = 1, and α=12 \alpha = {1 \over 2} , showcasing it as a multi-soliton solution.

Fig. 3

(a) The 3D plot of u3.3 (ξ) when λ = 4, μ = 4, C1 = −3, C2 = −5, β = 3, γ = 3, k1 = 3, k2 = 3 and α = 1, showcasing it as a solitary wave. (b) The 3D plot of v3.3 (ξ) when λ = 2, μ = 1, C1 = 1.1, C2 = 2, β = 15, γ = −1, k1 = 2, k2 = −2 and α=13 \alpha = {1 \over 3} , showcasing it as a single wave behavior.

3.2
The coupled Burgers equations

The governing equations in the conformal derivative of the coupled Burgers equations are given by Eq.(19), where 0 < α ≤ 1, p and q are two constants, h = h(x,t) and g = g(x,t) are functions of x and t independent variables. (19) DtαhDx2αh+2hDxαh+pDxαhg=0,DtαgDx2αg+2gDxαg+qDxαhg=0. \left\{{\matrix{{D_t^\alpha h - D_x^{2\alpha}h + 2hD_x^\alpha h + pD_x^\alpha \left({hg} \right) = 0,} \hfill \cr {D_t^\alpha g - D_x^{2\alpha}g + 2gD_x^\alpha g + qD_x^\alpha \left({hg} \right) = 0.} \hfill \cr}} \right. Using the following transformation: (20) hx,t=hξ,    gx,t=gξ,    ξ=k1αxα+k2αtα, h\left({x,t} \right) = h\left(\xi \right),\;\;\;\;g\left({x,t} \right) = g\left(\xi \right),\;\;\;\;\xi = {{{k_1}} \over \alpha}{x^\alpha} + {{{k_2}} \over \alpha}{t^\alpha}, where k1 and k2 are two constants, Eq.(19) becomes equivalent to Eq.(21). (21) k2Dξαhk12Dξ2αh+2k1hDξαh+pk1gDξαh+pk1hDξαg=0,k2Dξαgk12Dξ2αg+2k1gDξαg+qk1gDξαh+qk1hDξαg=0. \left\{{\matrix{{{k_2}D_\xi^\alpha h - k_1^2D_\xi^{2\alpha}h + 2{k_1}hD_\xi^\alpha h + p{k_1}gD_\xi^\alpha h + p{k_1}hD_\xi^\alpha g = 0,} \hfill \cr {{k_2}D_\xi^\alpha g - k_1^2D_\xi^{2\alpha}g + 2{k_1}gD_\xi^\alpha g + q{k_1}gD_\xi^\alpha h + q{k_1}hD_\xi^\alpha g = 0.} \hfill \cr}} \right. If we balance both nonlinear terms and order of derivatives with high levels in both equations of Eq.(21), we find n = 1 and m = 1. Hence, the solutions of Eq.(21) are given by Eq.(22), where αi ∈ ℝ (i = 0, 1, 2) and βj ∈ ℝ (j = 0, 1, 2) will be obtained later. (22) hξ=α0+α1DξαGξGξ+α2DξαGξGξ1,gξ=β0+β1DξαGξGξ+β2DξαGξGξ1. \left\{{\matrix{{h\left(\xi \right) = {\alpha_0} + {\alpha_1}\left({{{D_\xi^\alpha G\left(\xi \right)} \over {G\left(\xi \right)}}} \right) + {\alpha_2}{{\left({{{D_\xi^\alpha G\left(\xi \right)} \over {G\left(\xi \right)}}} \right)}^{- 1}},} \hfill \cr {g\left(\xi \right) = {\beta_0} + {\beta_1}\left({{{D_\xi^\alpha G\left(\xi \right)} \over {G\left(\xi \right)}}} \right) + {\beta_2}{{\left({{{D_\xi^\alpha G\left(\xi \right)} \over {G\left(\xi \right)}}} \right)}^{- 1}}.} \hfill \cr}} \right.

Substituting Eq.(22) into Eq.(21), the left side is transformed into polynomials in DξαGξGξj {\left({{{D_\xi^\alpha G\left(\xi \right)} \over {G\left(\xi \right)}}} \right)^j} where j = 0, ±1, ±2, …. As a result, we get a system of equations for k1, k2, αi(i = 0, 1, 2) and βj(j = 0, 1, 2) by setting the coefficients of these polynomials to zero. The Maple software is used to generate two cases:

Case 1: α0=α0,α1=α1,α2=0,β0=α0q1p1,β1=α1q1p1,β2=0,k1=α1pq1p1,k2=α1pq122α0λα1p12. \left\{{\matrix{{{\alpha_0} = {\alpha_0},{\alpha_1} = {\alpha_1},{\alpha_2} = 0,{\beta_0} = {\alpha_0}\left({{{q - 1} \over {p - 1}}} \right),{\beta_1} = {\alpha_1}\left({{{q - 1} \over {p - 1}}} \right),{\beta_2} = 0,} \hfill \cr {{k_1} = - {\alpha_1}\left({{{pq - 1} \over {p - 1}}} \right),{k_2} = {{{\alpha_1}{{\left({pq - 1} \right)}^2}\left({2{\alpha_0} - \lambda {\alpha_1}} \right)} \over {{{\left({p - 1} \right)}^2}}}.} \hfill \cr}} \right. hence (23) h1ξ=α0+α1DξαGξGξ,g1ξ=α0q1p1+α1q1p1DξαGξGξ,ξ=α1pq1p1αxα+α1pq122α0λα1p12αtα. \left\{{\matrix{{{h_1}\left(\xi \right) = {\alpha_0} + {\alpha_1}\left({{{D_\xi^\alpha G\left(\xi \right)} \over {G\left(\xi \right)}}} \right),} \hfill \cr {{g_1}\left(\xi \right) = {\alpha_0}\left({{{q - 1} \over {p - 1}}} \right) + {\alpha_1}\left({{{q - 1} \over {p - 1}}} \right)\left({{{D_\xi^\alpha G\left(\xi \right)} \over {G\left(\xi \right)}}} \right),} \hfill \cr {\xi = {{- {\alpha_1}\left({{{pq - 1} \over {p - 1}}} \right)} \over \alpha}{x^\alpha} + {{{{{\alpha_1}{{\left({pq - 1} \right)}^2}\left({2{\alpha_0} - \lambda {\alpha_1}} \right)} \over {{{\left({p - 1} \right)}^2}}}} \over \alpha}{t^\alpha}.} \hfill \cr}} \right.

Case 2: α0=β0p1q1,α1=0,α2=α2,β0=β0,β1=0,β2=α2q1p1,k1=α2μpq1p1,k2=α2pq12λα2q1+2μβ01pμ2p12q1. \left\{{\matrix{{{\alpha_0} = {\beta_0}\left({{{p - 1} \over {q - 1}}} \right),{\alpha_1} = 0,{\alpha_2} = {\alpha_2},{\beta_0} = {\beta_0},{\beta_1} = 0,{\beta_2} = {\alpha_2}\left({{{q - 1} \over {p - 1}}} \right),} \hfill \cr {{k_1} = {{{\alpha_2}} \over \mu}\left({{{pq - 1} \over {p - 1}}} \right),{k_2} = {{{\alpha_2}{{\left({pq - 1} \right)}^2}\left({\lambda {\alpha_2}\left({q - 1} \right) + 2\mu {\beta_0}\left({1 - p} \right)} \right)} \over {{\mu^2}{{\left({p - 1} \right)}^2}\left({q - 1} \right)}}.} \hfill \cr}} \right. then (24) h2ξ=β0p1q1+α2DξαGξGξ1,g2ξ=β0+α2q1p1DξαGξGξ1,ξ=α2μpq1p1αxα+α2pq12λα2q1+2μβ01pμ2p12q1αtα, \left\{{\matrix{{{h_2}\left(\xi \right) = {\beta_0}\left({{{p - 1} \over {q - 1}}} \right) + {\alpha_2}{{\left({{{D_\xi^\alpha G\left(\xi \right)} \over {G\left(\xi \right)}}} \right)}^{- 1}},} \hfill \cr {{g_2}\left(\xi \right) = {\beta_0} + {\alpha_2}\left({{{q - 1} \over {p - 1}}} \right){{\left({{{D_\xi^\alpha G\left(\xi \right)} \over {G\left(\xi \right)}}} \right)}^{- 1}},} \hfill \cr {\xi = {{{{{\alpha_2}} \over \mu}\left({{{pq - 1} \over {p - 1}}} \right)} \over \alpha}{x^\alpha} + {{{{{\alpha_2}{{\left({pq - 1} \right)}^2}\left({\lambda {\alpha_2}\left({q - 1} \right) + 2\mu {\beta_0}\left({1 - p} \right)} \right)} \over {{\mu^2}{{\left({p - 1} \right)}^2}\left({q - 1} \right)}}} \over \alpha}{t^\alpha},} \hfill \cr}} \right.

Using Case 2 and Eq.(17), the coupled Burgers equations have the following new exact solutions:

Case (2.1). (λ2 − 4μ) < 0, h2.1ξ=β0p1q1+α2λ2+α2λ24μα2C1cosh12λ24μα2ξα+C2sinh12λ24μα2ξαC1sinh12λ24μα2ξα+C2cosh12λ24μα2ξα1,g2.1ξ=β0+α2q1p1λ2+α2λ24μα2C1cosh12λ24μα2ξα+C2sinh12λ24μα2ξαC1sinh12λ24μα2ξα+C2cosh12λ24μα2ξα1,ξ=α2μpq1p1αxα+α2pq12λα2q1+2μβ01pμ2p12q1αtα. \left\{{\matrix{{{h_{2.1}}\left(\xi \right) = {\beta_0}\left({{{p - 1} \over {q - 1}}} \right) + {\alpha_2}{{\left({- {\lambda \over 2} + {\alpha \over 2}\sqrt {{{\left({{\lambda^2} - 4\mu} \right)} \over {{\alpha^2}}}} \left({{{{C_1}\cosh \left({{1 \over 2}\sqrt {{{\left({{\lambda^2} - 4\mu} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right) + {C_2}\sinh \left({{1 \over 2}\sqrt {{{\left({{\lambda^2} - 4\mu} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right)} \over {{C_1}\sinh \left({{1 \over 2}\sqrt {{{\left({{\lambda^2} - 4\mu} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right) + {C_2}\cosh \left({{1 \over 2}\sqrt {{{\left({{\lambda^2} - 4\mu} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right)}}} \right)} \right)}^{- 1}},} \hfill \cr {{g_{2.1}}\left(\xi \right) = {\beta_0} + {\alpha_2}\left({{{q - 1} \over {p - 1}}} \right){{\left({- {\lambda \over 2} + {\alpha \over 2}\sqrt {{{\left({{\lambda^2} - 4\mu} \right)} \over {{\alpha^2}}}} \left({{{{C_1}\cosh \left({{1 \over 2}\sqrt {{{\left({{\lambda^2} - 4\mu} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right) + {C_2}\sinh \left({{1 \over 2}\sqrt {{{\left({{\lambda^2} - 4\mu} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right)} \over {{C_1}\sinh \left({{1 \over 2}\sqrt {{{\left({{\lambda^2} - 4\mu} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right) + {C_2}\cosh \left({{1 \over 2}\sqrt {{{\left({{\lambda^2} - 4\mu} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right)}}} \right)} \right)}^{- 1}},} \hfill \cr {\xi = \left({{{{{{\alpha_2}} \over \mu}\left({{{pq - 1} \over {p - 1}}} \right)} \over \alpha}} \right){x^\alpha} + \left({{{{{{\alpha_2}{{\left({pq - 1} \right)}^2}\left({\lambda {\alpha_2}\left({q - 1} \right) + 2\mu {\beta_0}\left({1 - p} \right)} \right)} \over {{\mu^2}{{\left({p - 1} \right)}^2}\left({q - 1} \right)}}} \over \alpha}} \right){t^\alpha}.} \hfill \cr}} \right.

Case (2.2). (λ2 − 4μ) = 0, h2.2ξ=β0p1q1+α2λ2+α24μλ2α2C1cos124μλ2α2ξαC2sin124μλ2α2ξαC1sin124μλ2α2ξα+C2cos124μλ2α2ξα1,g2.2ξ=β0+α2q1p1λ2+α24μλ2α2C1cos124μλ2α2ξαC2sin124μλ2α2ξαC1sin124μλ2α2ξα+C2cos124μλ2α2ξα1,ξ=α2μpq1p1αxα+α2pq12λα2q1+2μβ01pμ2p12q1αtα. \left\{ {\matrix{{{h_{2.2}}\left(\xi \right) = {\beta_0}\left({{{p - 1} \over {q - 1}}} \right) + {\alpha_2}{{\left({ - {\lambda \over 2} + {\alpha \over 2}\sqrt {{{\left({4\mu - {\lambda^2}} \right)} \over {{\alpha^2}}}} \left({{{{C_1}\cos \left({{1 \over 2}\sqrt {{{\left({4\mu - {\lambda^2}} \right)} \over {{\alpha^2}}}} {\xi^\alpha }} \right) - {C_2}\sin \left({{1 \over 2}\sqrt {{{\left({4\mu - {\lambda^2}} \right)} \over {{\alpha^2}}}} {\xi^\alpha }} \right)} \over {{C_1}\sin \left({{1 \over 2}\sqrt {{{\left({4\mu - {\lambda^2}} \right)} \over {{\alpha^2}}}} {\xi^\alpha }} \right) + {C_2}\cos \left({{1 \over 2}\sqrt {{{\left({4\mu - {\lambda^2}} \right)} \over {{\alpha^2}}}} {\xi^\alpha }} \right)}}} \right)} \right)}^{ - 1}},} \hfill \cr {{g_{2.2}}\left(\xi \right) = {\beta_0} + {\alpha_2}\left({{{q - 1} \over {p - 1}}} \right){{\left({ - {\lambda \over 2} + {\alpha \over 2}\sqrt {{{\left({4\mu - {\lambda^2}} \right)} \over {{\alpha^2}}}} \left({{{{C_1}\cos \left({{1 \over 2}\sqrt {{{\left({4\mu - {\lambda^2}} \right)} \over {{\alpha^2}}}} {\xi^\alpha }} \right) - {C_2}\sin \left({{1 \over 2}\sqrt {{{\left({4\mu - {\lambda^2}} \right)} \over {{\alpha^2}}}} {\xi^\alpha }} \right)} \over {{C_1}\sin \left({{1 \over 2}\sqrt {{{\left({4\mu - {\lambda^2}} \right)} \over {{\alpha^2}}}} {\xi^\alpha }} \right) + {C_2}\cos \left({{1 \over 2}\sqrt {{{\left({4\mu - {\lambda^2}} \right)} \over {{\alpha^2}}}} {\xi^\alpha }} \right)}}} \right)} \right)}^{ - 1}},} \hfill \cr {\xi = \left({{{{{{\alpha_2}} \over \mu }\left({{{pq - 1} \over {p - 1}}} \right)} \over \alpha }} \right){x^\alpha } + \left({{{{{{\alpha_2}{{\left({pq - 1} \right)}^2}\left({\lambda {\alpha_2}\left({q - 1} \right) + 2\mu {\beta_0}\left({1 - p} \right)} \right)} \over {{\mu^2}{{\left({p - 1} \right)}^2}\left({q - 1} \right)}}} \over \alpha }} \right){t^\alpha }.} \hfill \cr } } \right.

Case (2.3). (λ2 − 4μ) = 0, h2.3ξ=β0p1q1+α2λ2+C2αC1+C2ξα1,g2.3ξ=β0+α2q1p1λ2+C2αC1+C2ξα1,ξ=α2μpq1p1αxα+α2pq12λα2q1+2μβ01pμ2p12q1αtα. \left\{{\matrix{{{h_{2.3}}\left(\xi \right) = {\beta_0}\left({{{p - 1} \over {q - 1}}} \right) + {\alpha_2}{{\left({- {\lambda \over 2} + {{{C_2}\alpha} \over {{C_1} + {C_2}{\xi^\alpha}}}} \right)}^{- 1}},} \hfill \cr {{g_{2.3}}\left(\xi \right) = {\beta_0} + {\alpha_2}\left({{{q - 1} \over {p - 1}}} \right){{\left({- {\lambda \over 2} + {{{C_2}\alpha} \over {{C_1} + {C_2}{\xi^\alpha}}}} \right)}^{- 1}},} \hfill \cr {\xi = \left({{{{{{\alpha_2}} \over \mu}\left({{{pq - 1} \over {p - 1}}} \right)} \over \alpha}} \right){x^\alpha} + \left({{{{{{\alpha_2}{{\left({pq - 1} \right)}^2}\left({\lambda {\alpha_2}\left({q - 1} \right) + 2\mu {\beta_0}\left({1 - p} \right)} \right)} \over {{\mu^2}{{\left({p - 1} \right)}^2}\left({q - 1} \right)}}} \over \alpha}} \right){t^\alpha}.} \hfill \cr}} \right. Similarly, the remaining solutions for Case 1 can be obtained analogously.

Figures (4,5,6) are shown below: h2.1 (ξ), h2.2 (ξ), h2.3 (ξ), g2.1 (ξ), g2.2 (ξ) and g2.3 (ξ). This information was plotted using Maple 2022, which helped us see each solution's characteristics more clearly.

Fig. 4

(a) The 3D plot of h2.1 (ξ) when λ = 4, μ=12 \mu = {1 \over 2} , β0 = 2, α2 = 2, C1 = −1, C2 = 1, p = 8, q = 2 and α=12 \alpha = {1 \over 2} , showcasing it as multi-soliton solution, (b) The 3D plot of g2.1 (ξ)) when λ = 2, μ = 0.1, β0 = 1, α2 = 1, C1 = 4, C2 = 2, p = 6, q = 0.05 and α=12 \alpha = {1 \over 2} , showcasing it as a as soliton solution.

Fig. 5

(a) The 3D plot of h2.2 (ξ) when λ = 2, μ = 8, α=12 \alpha = {1 \over 2} , β0 = 1, α2 = 2, C1 = −5, C2 = −11, p = 6 and q = 3, showcasing it as multi-soliton solution, (b) The 3D plot of g2.2 (ξ) when λ = 1, μ = 4, β0 = 2, α2 = 1, C1 = −11, C2 = 2, p = −4, q = 3 and α=12 \alpha = {1 \over 2} , showcasing it as multi-soliton solution.

Fig. 6

(a) The 3D plot of of h3.3 (ξ) when λ = 2, μ = 1, α=12 \alpha = {1 \over 2} , β0 = 1, α2 = 1, C1 = 1, C2 = 1, p = 6 and q = 5, showcasing it as Singular Kink wave solution, (b) The 3D plot of g3.3 (ξ) when λ = 2, μ = 1, β0 = 1, α2 = 1, C1 = 111, C2 = 5, p = 2, q = 5 and α=12 \alpha = {1 \over 2} , showcasing it as singular anti Kink wave solution of

3.3
The coupled mKdV equation

The governing equations in the conformal derivative of the coupled mKdV equation are given by Eq.(25), (25) Dtαψ=12Dx3αψ3ψ2Dxαψ+32Dx2αψ+3Dxαψϕ3δDxαψ,Dtαϕ=Dx3αϕ3ϕDxαϕ3DxαψDxαϕ+3ψ2Dxαϕ+3δDxαϕ, \left\{{\matrix{{D_t^\alpha \psi = {1 \over 2}D_x^{3\alpha}\psi - 3{\psi^2}D_x^\alpha \psi + {3 \over 2}D_x^{2\alpha}\psi + 3D_x^\alpha \left({\psi \phi} \right) - 3\delta D_x^\alpha \psi,} \hfill \cr {D_t^\alpha \phi = - D_x^{3\alpha}\phi - 3\phi D_x^\alpha \phi - 3D_x^\alpha \psi D_x^\alpha \phi + 3{\psi^2}D_x^\alpha \phi + 3\delta D_x^\alpha \phi,} \hfill \cr}} \right. where 0 < α ≤ 1, δ is a constant, ψ = ψ(x,t) and ϕ = ϕ(x,t) are functions of x and t independent variables. We consider the following traveling wave transformation where k1, k2 are two constants: (26) ψx,t=ψξ,  ϕx,t=ϕξ,  ξ=k1αxα+k2αtα, \psi \left({x,t} \right) = \psi \left(\xi \right),\;\;\phi \left({x,t} \right) = \phi \left(\xi \right),\;\;\xi = {{{k_1}} \over \alpha}{x^\alpha} + {{{k_2}} \over \alpha}{t^\alpha},

We find the following nonlinear conformal derivative ordinary differential equations by replacing Eq.(26) in Eq.(25): (27) k2Dξαψ=12k13Dξ3αψ3k1ψ2Dξαψ+32k12Dξ2αψ+3k1ψDξαϕ+3k1ϕDξαψ3δk1Dξαψ,k2Dξαϕ=k13Dξ3αϕ3k1ϕDξαϕ3k12DξαψDξαϕ+3k1ψ2Dξαϕ+3δk1Dξαϕ. \left\{{\matrix{{{k_2}D_\xi^\alpha \psi = {1 \over 2}k_1^3D_\xi^{3\alpha}\psi - 3{k_1}{\psi^2}D_\xi^\alpha \psi + {3 \over 2}k_1^2D_\xi^{2\alpha}\psi + 3{k_1}\psi D_\xi^\alpha \phi + 3{k_1}\phi D_\xi^\alpha \psi - 3\delta {k_1}D_\xi^\alpha \psi,} \hfill \cr {{k_2}D_\xi^\alpha \phi = - k_1^3D_\xi^{3\alpha}\phi - 3{k_1}\phi D_\xi^\alpha \phi - 3k_1^2D_\xi^\alpha \psi D_\xi^\alpha \phi + 3{k_1}{{\psi}^2}D_\xi^\alpha \phi + 3\delta {k_1}D_\xi^\alpha \phi.} \hfill \cr}} \right.

We balance both nonlinear terms and order of derivatives with high levels in both equations of Eq.(27) to get n = 1 and m = 1. Thus, the solutions of Eq.(27) are given by Eq.(28), where αi ∈ ℝ (i = 0, 1, 2) and βj ∈ ℝ (j = 0, 1, 2) will be obtained later. (28) ψξ=α0+α1DξαGξGξ+α2DξαGξGξ1,ϕξ=β0+β1DξαGξGξ+β2DξαGξGξ1. \left\{{\matrix{{\psi \left(\xi \right) = {\alpha_0} + {\alpha_1}\left({{{D_\xi^\alpha G\left(\xi \right)} \over {G\left(\xi \right)}}} \right) + {\alpha_2}{{\left({{{D_\xi^\alpha G\left(\xi \right)} \over {G\left(\xi \right)}}} \right)}^{- 1}},} \hfill \cr {\phi \left(\xi \right) = {\beta_0} + {\beta_1}\left({{{D_\xi^\alpha G\left(\xi \right)} \over {G\left(\xi \right)}}} \right) + {\beta_2}{{\left({{{D_\xi^\alpha G\left(\xi \right)} \over {G\left(\xi \right)}}} \right)}^{- 1}}.} \hfill \cr}} \right.

By replacing Eq.(28) in Eq.(27), the left side of Eq.(27) is transformed into polynomials in DξαGξGξj {\left({{{D_\xi^\alpha G\left(\xi \right)} \over {G\left(\xi \right)}}} \right)^j} where j = 0, ±1, ±2, …. As a result, we get a system of equations for k1, k2, αi, i ∈ {0, 1, 2} and βj, (j ∈ {0, 1, 2, 3, 4}) by setting the coefficients of these polynomials to zero. The Maple software is used to generate two cases:

Case 1: α0=12λk1+1,α1=k1,α2=0,β0=122δ+λk1,β1=k1,β2=0,k1=k1,k2=14k13k12λ24μ. \left\{{\matrix{{{\alpha_0} = {1 \over 2}\left({\lambda {k_1} + 1} \right),{\alpha_1} = {k_1},{\alpha_2} = 0,{\beta_0} = {1 \over 2}\left({2\delta + \lambda {k_1}} \right),} \hfill \cr {{\beta_1} = {k_1},{\beta_2} = 0,{k_1} = {k_1},{k_2} = {1 \over 4}{k_1}\left({3 - k_1^2\left({{\lambda^2} - 4\mu} \right)} \right).} \hfill \cr}} \right. then ψ1.1ξ=12λk1+1+k1DξαGξGξ,ϕ1.1ξ=122δ+λk1+k1DξαGξGξ,ξ=k1xαα+14k13k12λ24μtαα. \left\{{\matrix{{{\psi_{1.1}}\left(\xi \right) = {1 \over 2}\left({\lambda {k_1} + 1} \right) + {k_1}\left({{{D_\xi^\alpha G\left(\xi \right)} \over {G\left(\xi \right)}}} \right),} \hfill \cr {{\phi_{1.1}}\left(\xi \right) = {1 \over 2}\left({2\delta + \lambda {k_1}} \right) + {k_1}\left({{{D_\xi^\alpha G\left(\xi \right)} \over {G\left(\xi \right)}}} \right),} \hfill \cr {\xi = {k_1}{{{{\left(x \right)}^\alpha}} \over \alpha} + {1 \over 4}{k_1}\left({3 - k_1^2\left({{\lambda^2} - 4\mu} \right)} \right){{{{\left(t \right)}^\alpha}} \over \alpha}.} \hfill \cr}} \right.

Case 2: α0=121λk1,α1=0,α2=μk1,β0=122δλk1,β1=0,β2=μk1,k1=k1,k2=14k13k12λ24μ. \left\{{\matrix{{{\alpha_0} = {1 \over 2}\left({1 - \lambda {k_1}} \right),{\alpha_1} = 0,{\alpha_2} = - \mu {k_1},{\beta_0} = {1 \over 2}\left({2\delta - \lambda {k_1}} \right),} \hfill \cr {{\beta_1} = 0,{\beta_2} = - \mu {k_1},{k_1} = {k_1},{k_2} = {1 \over 4}{k_1}\left({3 - k_1^2\left({{\lambda^2} - 4\mu} \right)} \right).} \hfill \cr}} \right. hence ψ2.1ξ=121λk1μk1DξαGξGξ1,ϕ2.1ξ=122δλk1μk1DξαGξGξ1,ξ=k1xαα+14k13k12λ24μtαα. \left\{{\matrix{{{\psi_{2.1}}\left(\xi \right) = {1 \over 2}\left({1 - \lambda {k_1}} \right) - \mu {k_1}{{\left({{{D_\xi^\alpha G\left(\xi \right)} \over {G\left(\xi \right)}}} \right)}^{- 1}},} \hfill \cr {{\phi_{2.1}}\left(\xi \right) = {1 \over 2}\left({2\delta - \lambda {k_1}} \right) - \mu {k_1}{{\left({{{D_\xi^\alpha G\left(\xi \right)} \over {G\left(\xi \right)}}} \right)}^{- 1}},} \hfill \cr {\xi = {k_1}{{{{\left(x \right)}^\alpha}} \over \alpha} + {1 \over 4}{k_1}\left({3 - k_1^2\left({{\lambda^2} - 4\mu} \right)} \right){{{{\left(t \right)}^\alpha}} \over \alpha}.} \hfill \cr}} \right.

Using Case 1 and Eq.(17), the coupled mKdV equation has the following new exact solutions:

Case (1.1). (λ2 − 4μ) > 0, ψ1.1ξ=121+λk1+k1λ2+α2λ24μα2C1cosh12λ24μα2ξα+C2sinh12λ24μα2ξαC1sinh12λ24μα2ξα+C2cosh12λ24μα2ξα,ϕ1.1ξ=12λk1+2δ+k1λ2+α2λ24μα2C1cosh12λ24μα2ξα+C2sinh12λ24μα2ξαC1sinh12λ24μα2ξα+C2cosh12λ24μα2ξα,=k1αxα+14k1k124μλ2+3αtα. \left\{{\matrix{{{\psi_{1.1}}\left(\xi \right) = {1 \over 2}\left({1 + \lambda {k_1}} \right) + {k_1}\left({- {\lambda \over 2} + {\alpha \over 2}\sqrt {{{\left({{\lambda^2} - 4\mu} \right)} \over {{\alpha^2}}}} \left({{{{C_1}\cosh \left({{1 \over 2}\sqrt {{{\left({{\lambda^2} - 4\mu} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right) + {C_2}\sinh \left({{1 \over 2}\sqrt {{{\left({{\lambda^2} - 4\mu} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right)} \over {{C_1}\sinh \left({{1 \over 2}\sqrt {{{\left({{\lambda^2} - 4\mu} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right) + {C_2}\cosh \left({{1 \over 2}\sqrt {{{\left({{\lambda^2} - 4\mu} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right)}}} \right)} \right),} \hfill \cr {{\phi_{1.1}}\left(\xi \right) = {1 \over 2}\left({\lambda {k_1} + 2\delta} \right) + {k_1}\left({- {\lambda \over 2} + {\alpha \over 2}\sqrt {{{\left({{\lambda^2} - 4\mu} \right)} \over {{\alpha^2}}}} \left({{{{C_1}\cosh \left({{1 \over 2}\sqrt {{{\left({{\lambda^2} - 4\mu} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right) + {C_2}\sinh \left({{1 \over 2}\sqrt {{{\left({{\lambda^2} - 4\mu} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right)} \over {{C_1}\sinh \left({{1 \over 2}\sqrt {{{\left({{\lambda^2} - 4\mu} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right) + {C_2}\cosh \left({{1 \over 2}\sqrt {{{\left({{\lambda^2} - 4\mu} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right)}}} \right)} \right),} \hfill \cr {= \left({{{{k_1}} \over \alpha}} \right){x^\alpha} + \left({{{{1 \over 4}{k_1}\left({k_1^2\left({4\mu - {\lambda^2}} \right) + 3} \right)} \over \alpha}} \right){t^\alpha}.} \hfill \cr}} \right.

Case (1.2). (λ2 − 4μ) < 0, ψ1.2ξ=121+λk1+k1λ2+α24μλ2α2C1cos124μλ2α2ξαC2sin124μλ2α2ξαC1sin124μλ2α2ξα+C2cos124μλ2α2ξα,ϕ1.2ξ=12λk1+2δ+k1λ2+α24μλ2α2C1cos124μλ2α2ξαC2sin124μλ2α2ξαC1sin124μλ2α2ξα+C2cos124μλ2α2ξα,ξ=k1αxα+14k1k124μλ2+3αtα. \left\{{\matrix{{{\psi_{1.2}}\left(\xi \right) = {1 \over 2}\left({1 + \lambda {k_1}} \right) + {k_1}\left({- {\lambda \over 2} + {\alpha \over 2}\sqrt {{{\left({4\mu - {\lambda^2}} \right)} \over {{\alpha^2}}}} \left({{{{C_1}\cos \left({{1 \over 2}\sqrt {{{\left({4\mu - {\lambda^2}} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right) - {C_2}\sin \left({{1 \over 2}\sqrt {{{\left({4\mu - {\lambda^2}} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right)} \over {{C_1}\sin \left({{1 \over 2}\sqrt {{{\left({4\mu - {\lambda^2}} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right) + {C_2}\cos \left({{1 \over 2}\sqrt {{{\left({4\mu - {\lambda^2}} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right)}}} \right)} \right),} \hfill \cr {{\phi_{1.2}}\left(\xi \right) = {1 \over 2}\left({\lambda {k_1} + 2\delta} \right) + {k_1}\left({- {\lambda \over 2} + {\alpha \over 2}\sqrt {{{\left({4\mu - {\lambda^2}} \right)} \over {{\alpha^2}}}} \left({{{{C_1}\cos \left({{1 \over 2}\sqrt {{{\left({4\mu - {\lambda^2}} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right) - {C_2}\sin \left({{1 \over 2}\sqrt {{{\left({4\mu - {\lambda^2}} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right)} \over {{C_1}\sin \left({{1 \over 2}\sqrt {{{\left({4\mu - {\lambda^2}} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right) + {C_2}\cos \left({{1 \over 2}\sqrt {{{\left({4\mu - {\lambda^2}} \right)} \over {{\alpha^2}}}} {\xi^\alpha}} \right)}}} \right)} \right),} \hfill \cr {\xi = \left({{{{k_1}} \over \alpha}} \right){x^\alpha} + \left({{{{1 \over 4}{k_1}\left({k_1^2\left({4\mu - {\lambda^2}} \right) + 3} \right)} \over \alpha}} \right){t^\alpha}.} \hfill \cr}} \right.

Case (1.3). (λ2 − 4μ) = 0, ψ1.3ξ=121+λk1+k1λ2+C2αC1+C2ξα,ϕ1.3ξ=12λk1+2δ+k1λ2+C2αC1+C2ξα,ξ=k1αxα+3k14αtα. \left\{{\matrix{{{\psi_{1.3}}\left(\xi \right) = {1 \over 2}\left({1 + \lambda {k_1}} \right) + {k_1}\left({- {\lambda \over 2} + {{{C_2}\alpha} \over {{C_1} + {C_2}{\xi^\alpha}}}} \right),} \hfill \cr {{\phi_{1.3}}\left(\xi \right) = {1 \over 2}\left({\lambda {k_1} + 2\delta} \right) + {k_1}\left({- {\lambda \over 2} + {{{C_2}\alpha} \over {{C_1} + {C_2}{\xi^\alpha}}}} \right),} \hfill \cr {\xi = \left({{{{k_1}} \over \alpha}} \right){x^\alpha} + \left({{{3{k_1}} \over {4\alpha}}} \right){t^\alpha}.} \hfill \cr}} \right.

The remaining solutions for Case 2 can be obtained analogously.

We present the Figures (7,8,9) of some solutions obtained as ψ3.1 (ξ), ϕ3.1 (ξ), ψ3.2 (ξ), ϕ3.2 (ξ), ψ3.3 (ξ), and ϕ3.3 (ξ). These profiles were graphed using Maple 2022, aiding in a more transparent comprehension of their characteristics.

Fig. 7

(a) The 3D plot of ψ1.1 (ξ) when λ = 2, μ = 0.2, C1 = −5, C2 = 11, β = 1, k1 = 1 and α=12 \alpha = {1 \over 2} , showcasing it as Singular Kink wave solution, (b) The 3D plot of ϕ1.1 (ξ)) when λ = 2, μ = 0.2, C1 = −1, C2 = 1, β = 1, k1 = 1, δ = 2, and α=15 \alpha = {1 \over 5} , showcasing it as multi-soliton solution.

Fig. 8

(a) The 3D plot of ψ1.2 (ξ) when λ = 2, μ = 0.2, C1 = −5, C2 = 11, β = 1, k1 = 1 and α=12 \alpha = {1 \over 2} , showcasing it as muli-soliton solution, (b) The 3D plot of ϕ1.2 (ξ) when λ = 1, μ = 4, C1 = −11, C2 = 2, β = 1, k1 = 1, δ = −4, and α=13 \alpha = {1 \over 3} , showcasing it as multi-soliton solution.

Fig. 9

(a) The 3D plot of ψ1.3 (ξ)) when λ = 2, μ = 0.2, C1 = −5, C2 = 11, β = 1, k1 = 1 and α=12 \alpha = {1 \over 2} , showcasing it as soliton solution, (b)The 3D plot of ϕ1.3 (ξ)) when λ = 2, μ = 1, C1 = 2, C2 = −2, β = −2, k1 = 2, δ = 2, and α=13 \alpha = {1 \over 3} , showcasing it as soliton solution.

4
Conclusion

In this research paper, we presented the general properties of MCEM for solving various NPD equations. This method is based on the transforming the nonlinear equations into ordinary differential equations by utilizing Katugampola's derivative and the complex transform. The proposed method is effectively used to find exact solutions for three distinct space-time conformal derivative nonlinear equations: the Whitham-Broer-Kaup equations, the Burgers equations, and the modified Korteweg-de Vries equations. The exact solutions included singular kink wave solution, singular anti kink wave solution, multiple-soliton solution, and singular soliton were extracted. Under the suitable values of parameters in solutions, various wave simulations of results of this paper were simulated.

Language: English
Submitted on: May 31, 2024
Accepted on: Sep 3, 2024
Published on: Dec 17, 2025
Published by: Harran University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Lama Alhakim, Alaaeddin Moussa, Boubekeur Gasmi, Yazid Mati, Md Nurul Raihen, published by Harran University
This work is licensed under the Creative Commons Attribution 4.0 License.

AHEAD OF PRINT