Have a personal or library account? Click to login
Unmasking complexity: investigating numbers within Diophantine D(∓2) sets Cover

Unmasking complexity: investigating numbers within Diophantine D(∓2) sets

By: Özen Özer  
Open Access
|Dec 2025

References

  1. Apostol T.M., Introduction to Analytic Number Theory, Springer, USA, 1976.
  2. Cox D.A., Primes of the Form x2 + ny2: Fermat, Class Field Theory, and Complex Multiplication, Wiley, USA, 2013.
  3. Gauss C.F., Disquisitiones Arithmeticae, Yale University Press, USA, 1966.
  4. Gopalan M.A., Vidhyalaksfmi S., Özer Ö., A Collection of Pellian Equations (Solutions and Properties), Akinik Publications, New Delhi, India, 2018.
  5. Grosswald E., Topics from the Theory of Numbers (2nd Ed.), Birkhäuser, USA, 1984.
  6. Hardy G.H., Wright E.M., An Introduction to the Theory of Numbers, Oxford University Press, London, UK, 2008.
  7. Ireland K., Rosen M., A Classical Introduction to Modern Number Theory, Springer, USA, 2013.
  8. Niven I., Zuckerman H.S., Montgomery H.L., An Introduction to the Theory of Numbers (5th Ed.), John Wiley and Sons, USA, 2008.
  9. Nathanson M.B., Additive Number Theory: Inverse Problems and the Geometry of Sumsets, Springer Science and Business Media, USA, 2010.
  10. Özer Ö., On the some non extandable regular P−2 sets, Malaysian Journal of Mathematical Sciences, 12(2), 255–266, 2018.
  11. Özer Ö., A note on the some specific Diophantine D(s) property from triple to quadruple, Egyptian Computer Science Journal, 46(2), 100–112, 2022.
  12. Özer Ö., Some results on the extensions of special Diophantine D(s) sets from single to triples, Egyptian Computer Science Journal, 46(2), 90–99, 2022.
  13. Özer Ö., Some notes on the extendibility of an especial family of Diophantine P2 pairs, Journal of Advanced Mathematics and Mathematics Education, 6(2), 1–7, 2023.
  14. Serre J.P., A Course in Arithmetic (3rd Ed., 1973), Springer, USA, 1996.
  15. Shafarevich I.R., Basic Algebraic Geometry 1: Varieties in Projective Space, Springer, USA, 2013.
  16. Washington L.C., Elliptic Curves: Number Theory and Cryptography (2nd Ed.), CRC Press, USA, 2008.
  17. Wright S., Quadratic residues and non-residues in arithmetic progression, Journal of Number Theory, 133(7), 2398–2430, 2013.
  18. Yousafzai F., Zia M.D., Khalaf M.M., Al-Sabri E.H.A., Ismail R., Applications of AG-Groupoids in decision-making via linear Diophantine fuzzy sets, Discrete Dynamics in Nature in Society, DOI:10.1155/2023/3411475, 2023.
  19. Yousafzai F., Zia M.D., Khan M.I., Khalaf M.M., Ismail R., Linear Diophantine fuzzy sets over complex fuzzy information with applications in information theory, Ain Shams Engineering Journal, 15(1), 102327, 2024.
Language: English
Submitted on: Jan 1, 2024
Accepted on: Jul 12, 2024
Published on: Dec 14, 2025
Published by: Harran University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Özen Özer, published by Harran University
This work is licensed under the Creative Commons Attribution 4.0 License.

AHEAD OF PRINT