Have a personal or library account? Click to login
Improving mobile security: A study on android malware detection using LOF Cover

Improving mobile security: A study on android malware detection using LOF

By: Luay Albtosh and  Marwan Omar  
Open Access
|Sep 2024

Figures & Tables

Fig. 1

Schematic of the malware detection process using the LOF method.
Schematic of the malware detection process using the LOF method.

Fig. 2

Illustration of malware detection using LOF.
Illustration of malware detection using LOF.

Fig. 3

Comparison of accuracy.
Comparison of accuracy.

Fig. 4

Precision and recall comparison.
Precision and recall comparison.

Fig. 5

FPR comparison.
FPR comparison.

Android malware detection performance metrics_

MethodAccuracyPrecisionRecallFPR

LOF0.92020.84950.3670.2367
Isolation Forest0.88010.81230.3980.2856
Decision Tree0.86530.79750.3820.2941
KNN0.90120.82560.4050.2712

Comparison of android malware detection methods (Hypothetical results)_

MetricLOFIsolation ForestDecision TreeKNN

Accuracy0.92020.88010.86530.9012
F1 Score0.84950.81230.79750.8256
FPR0.36700.42000.43500.3980
Precision0.86320.79560.78340.8157
Recall0.83710.83240.81020.8452
AUC0.93150.89970.88360.9154
MCC0.72610.67820.65790.7064
TNR0.63200.57700.59100.6120

Algorithm Description: Malware Detection using Local Outlier Factor

1:Input:
2:  D: The dataset of feature vectors from Android applications.
3:  k: Number of nearest neighbors for LOF calculation.
4:  t: Outlier threshold for labeling applications.
5:Output:
6:  List of Android applications labeled as benign or malware.
7:procedure TrainLOF(D, k)
8:  Compute the k-distance for each application in D.
9:   Compute the reachability distance for each application in D.
10:  Compute the local reachability density for each application.
11:  Compute the LOF score for each application.
12:  return Model with LOF scores.
13:end procedure
14:procedure DetectMalware(Model, t)
15:  for each application x in D do
16:    Compute the LOF score for x using the trained Model.
17:    if LOF score of x > t then
18:      Label x as malware.
19:    else
20:      Label x as benign.
21:    end if
22:  end for
23:  return List of labeled applications.
24:end procedure
Language: English
Page range: 241 - 252
Submitted on: Nov 5, 2023
Accepted on: May 1, 2024
Published on: Sep 18, 2024
Published by: Harran University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Luay Albtosh, Marwan Omar, published by Harran University
This work is licensed under the Creative Commons Attribution 4.0 License.