Have a personal or library account? Click to login
SecuGuard: Leveraging pattern-exploiting training in language models for advanced software vulnerability detection Cover

SecuGuard: Leveraging pattern-exploiting training in language models for advanced software vulnerability detection

By: Mahmoud Basharat and  Marwan Omar  
Open Access
|Jun 2024

References

  1. Abbasi R., Bashir A.K., Mateen A., Amin F., Ge Y., Omar M., Efficient security and privacy of lossless secure communication for sensor-based urban cities, IEEE Sensors Journal, DOI: 10.1109/JSEN.2023.3305716, 2024.
  2. Kinoon M.A., Omar M., Mohaisen M., Mohaisen D., Security breaches in the healthcare domain: a spatiotemporal analysis, Computational Data and Social Networks: 10th International Conference, CSoNet 2021, Virtual Event, 15–17 November 2021, 171–183, 2021.
  3. Alharbi A.R., Hijji M., Aljaedi A., Enhancing topic clustering for Arabic security news based on k-means and topic modelling, IET Networks, 10(6), 278–294, 2021.
  4. Aluru S.S., Mathew B., Saha P., Mukherjee A., Deep learning models for multilingual hate speech detection, arXiv:2004.06465, 2020.
  5. Beyer L., Zhai X., Royer A., Markeeva L., Anil R., Kolesnikov A., Knowledge distillation: a good teacher is patient and consistent, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 18–24 June 2022, New Orleans, Los Angeles, USA, 10925–10934, 2022.
  6. Chakraborty S., Krishna R., Ding Y., Ray B., Deep learning based vulnerability detection: Are we there yet?, IEEE Transactions on Software Engineering, 48(9), 3280–3296, 2021.
  7. Cheng X., Wang H., Hua J., Xu G., Sui Y., DeepWukong: statically detecting software vulnerabilities using deep graph neural network, ACM Transactions on Software Engineering and Methodology, 30(3), 1–33, 2021.
  8. Furlanello T., Lipton Z., Tschannen M., Itti L., Anandkumar A., Born again neural networks, International Conference on Machine Learning, PLMR, 1607–1616, 2018.
  9. Gholami S., Omar M., Can a student large language model perform as well as it’s teacher?, arXiv:2310.02421, 2023.
  10. Gholami S., Omar M., Do generative large language models need billions of parameters?, arXiv:2309.06589, 2023.
  11. Hanif H., Maffeis S., VulBERTa: simplified source code pre-training for vulnerability detection, 2022 International Joint Conference on Neural Networks, 18–23 July 2022, Padua, Italy, 1–8, 2022.
  12. Kim S., Woo S., Lee H., Oh H., VUDDY: a scalable approach for vulnerable code clone discovery, 2017 IEEE Symposium on Security and Privacy, IEEE, 22–26 May 2017, San Jose, California, USA, 595–614, 2017.
  13. Kim S., Choi J., Ahmed M.E., Nepal S., Kim H., VulDeBERT: a vulnerability detection system using BERT, 2022 International Symposium on Software Reliability Engineering Workshops, IEEE, 31 October 3 November 2022, Charlotte, New York, USA, 69–74, 2022.
  14. Li Z., Zou D., Xu S., Jin H., Qi H., Hu J., VulPecker: an automated vulnerability detection system based on code similarity analysis, Proceedings of the 32nd Annual Conference on Computer Security Applications, Association for Computing Machinery New York USA, 5–8 December 2016, Los Angeles, California, USA, 201–213, 2016.
  15. Omar M., Application of machine learning (ML) to address cybersecurity threats, In Machine Learning for Cybersecurity: Innovative Deep Learning Solutions, Springer, 1–11, 2022.
  16. Omar M., Machine Learning for Cybersecurity: Innovative Deep Learning Solutions, Springer, 2022.
  17. Omar M., Machine Learning for Cybersecurity: Innovative Deep Learning Solutions (Chapter: Malware anomaly detection using local outlier factor technique), Springer, 2022.
  18. Omar M., Backdoor learning for NLP: recent advances, challenges, and future research directions, arXiv:2302.06801, 2023.
  19. Omar M., VulDefend: a novel technique based on pattern exploiting training for detecting software vulnerabilities using language models, 2023 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology, IEEE, 22–24 May 2023, Amman, Jordan, 287–293, 2023.
  20. Omar M., Burrell D., From text to threats: a language model approach to software vulnerability detection, International Journal of Mathematics and Computer in Engineering, 2(1), 23–34, 2024.
  21. Omar M., Choi S., Nyang D., Mohaisen D., Quantifying the performance of adversarial training on language models with distribution shifts, Proceedings of the 1st Workshop on Cybersecurity and Social Sciences, 30 May 2022, Nagasaki Japan, 3–9, 2022.
  22. Omar M., Choi S., Nyang D., Mohaisen D., Robust natural language processing: recent advances, challenges, and future directions, arXiv:2201.00768, 2022.
  23. Omar M., Jones R., Burrell D.N., Dawson M., Nobles C., Mohammed M., Bashir A.K., Harnessing the power and simplicity of decision trees to detect IoT Malware, Transformational Interventions for Business Technology and Healthcare, 215–229, 2023.
  24. Omar M., Mohaisen D., Making adversarially-trained language models forget with model retraining: a case study on hate speech detection, Companion Proceedings of the Web Conference 2022, Virtual Event, 25–29 April 2022, Lyon, France, 887–893, 2022.
  25. Rabheru R., Hanif H., Maffeis S., DeepTective: detection of PHP vulnerabilities using hybrid graph neural networks, Proceedings of the 36th Annual ACM Symposium on Applied Computing, Virtual Event, Republic of Korea, 22–26 March 2021, 1687–1690, 2021.
  26. Radford A., Wu J., Child R., Luan D., Amodei D., Sutskever I., Language models are unsupervised multitask learners, OpenAI Blog, 1(8), 9, 2019.
  27. Russell R., Kim L., Hamilton L., Lazovich T., Harer J., Ozdemir O., Ellingwood P., McConley M., Automated vulnerability detection in source code using deep representation learning, 2018 17th IEEE international conference on machine learning and applications, IEEE, 17–20 December 2018, Orlando, Florida, USA, 757–762, 2018.
  28. Saleem M.A., Li X., Mahmood K., Shamshad S., Ayub M.F., Bashir A.K., Omar M., Provably secure conditional-privacy access control protocol for intelligent customers-centric communication in VANET, IEEE Transactions on Consumer Electronics, 2023.
  29. Salimi S., Kharrazi M., VulSlicer: vulnerability detection through code slicing, Journal of Systems and Software, 193, 111450, 2022.
  30. Shoeybi M., Patwary M., Puri R., LeGresley P., Casper J., Catanzaro B., Megatron-LM: training multi-billion parameter language models using model parallelism, arXiv:1909.08053, 2019.
  31. Yamaguchi F., Golde N., Arp D., Rieck K., Modeling and discovering vulnerabilities with code property graphs, 2014 IEEE Symposium on Security and Privacy, 590–604, 2014.
  32. Yan R., Xiao X., Hu G., Peng S., Jiang Y., New deep learning method to detect code injection attacks on hybrid applications, Journal of Systems and Software, 137, 67–77, 2018.
  33. Zheng Y., Pujar S., Lewis B., Buratti L., Epstein E., Yang B., Laredo J., Morari A., Su Z., D2A: a dataset built for AI-based vulnerability detection methods using differential analysis, 2021 IEEE/ACM 43rd International Conference on Software Engineering: Software Engineering in Practice, IEEE, 25–28 May 2021, Madrid, Spain, 111–120, 2021.
  34. Zhou X., Verma R.M., Vulnerability detection via multimodal learning: datasets and analysis, Proceedings of the 2022 ACM on Asia Conference on Computer and Communications Security, 30 May–3 June 2022, Nagasaki, Japan, 1225–1227, 2022.
  35. Zhou Y., Liu S., Siow J.K., Du X., Liu Y., Advances in Neural Information Processing Systems (Chapter: Devign: Effective vulnerability identification by learning comprehensive program semantics via graph neural networks), 10197–10207, 2019.
  36. Zou D., Wang S., Xu S., Li Z., Jin H., µVulDeePecker: a deep learning-based system for multiclass vulnerability detection, IEEE Transactions on Dependable and Secure Computing, 18(5), 2224–2236, 2021.
Language: English
Page range: 47 - 56
Submitted on: Oct 28, 2023
Accepted on: Jan 16, 2024
Published on: Jun 2, 2024
Published by: Harran University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Mahmoud Basharat, Marwan Omar, published by Harran University
This work is licensed under the Creative Commons Attribution 4.0 License.