Have a personal or library account? Click to login

On the complex version of the Cahn–Hilliard–Oono type equation for long interactions phase separation

Open Access
|Jan 2024

References

  1. Cahn J.W., Hilliard J.E., Free energy of a nonuniform system I. Interfacial free energy, The Journal of Chemical Physics, 28, 258–267, 1958.
  2. Cahn J.W., Hilliard J.E., Spinodal decomposition: A reprise, Acta Metallurgica, 19, 151–161, 1971.
  3. Cahn J.W., Hilliard J.E., Surface motion by surface diffusion, Acta Metallurgica, 42, 1045–1063, 1994.
  4. Cahn J.W., Hilliard J.E., Linking anisotropic and diffusive surface motion laws via gradient flows, Journal of Statistical Physics, 77, 183–197, 1994.
  5. Novick-Cohen A., Segel L.A., Nonlinear aspects of the Cahn–Hilliard equation, Physica D: Nonlinear Phenomena, 10(3), 277–298, 1984.
  6. Miranville A., The Cahn–Hilliard equation and some of its variants, AIMS Mathematics, 2(3), 479–544, 2017.
  7. Oono Y., Puri S., Computationally efficient modeling of ordering of quenched phases, Physical Review Letters, 58, 836–839, 1987.
  8. Villain-Guillot S., Phases modulées et dynamique de Cahn–Hilliard, Habilitation Thesis, Physique [physics]. Université Sciences et Technologies, Bordeaux I, 2010.
  9. Aristotelous A.C., Karakashian O.A., Wise S.M., Adaptive second-order in time primitive-variable discontinuous Galerkin schemes for a Cahn–Hilliard equation with a mass source, IMA Journal of Numerical Analysis, 35(3), 1167–1198, 2015.
  10. Cherfils L., Fakih H., Miranville A., Finite-dimensional attractors for the Bertozzi–Esedoglu–Gillette–Cahn–Hilliard equation in image inpainting, Inverse Problems and Imaging, 9(1), 105–125, 2015.
  11. Cherfils L., Fakih H., Miranville A., On the Bertozzi–Esedoglu–Gillette–Cahn–Hilliard equation with logarithmic nonlinear terms, SIAM Journal on Imaging Sciences, 8(2), 1123–1140, 2015.
  12. Cherfils L., Fakih H., Miranville A., A Cahn–Hilliard system with a fidelity term for color image inpainting, Journal of Mathematical Imaging and Vision, 54, 117–131, 2016.
  13. Cherfils L., Miranville A., Zelik S., On a generalized Cahn–Hilliard equation with biological applications, Discrete and Continuous Dynamical Systems - Series B, 19(7), 2013–2026, 2014.
  14. Cherfils L., Petcu M., Pierre M., A numerical analysis of the Cahn–Hilliard equation with dynamic boundary conditions, Discrete and Continuous Dynamical Systems, 27(4), 1511–1533, 2010.
  15. Elliott C.M., French D.A., Milner F.A., A second order splitting method for the Cahn–Hilliard equation, Numerische Mathematik, 54, 575–590, 1989.
  16. Fakih H., Asymptotic behavior of a generalized Cahn–Hilliard equation with a mass source, Applicable Analysis, 96(2), 324–348, 2017.
  17. Fakih H., A Cahn–Hilliard equation with a proliferation term for biological and chemical applications, Asymptotic Analysis, 94(1–2), 71–104, 2015.
  18. Fakih H., Mghames R., Nasreddine N., On the Cahn-Hilliard equation with mass source for biological applications, Communications on Pure and Applied Analysis, 20(2), 495–510, 2021.
  19. Cherfils L., Fakih H., Grasselli M., Miranville A., A convergent convex splitting scheme for a nonlocal Cahn-Hilliard-Oono thype equation with a transport term, ESAIM: Mathematical Modelling and Numerical Analysis, 55, 225–250, 2021.
  20. Khain E., Sander L.M., A generalized Cahn–Hilliard equation for biological applications, Physical Review E, 77, 51–129, 2008.
  21. Miranville A., Asymptotic behavior of the Cahn–Hilliard–Oono equation, Journal of Applied Analysis and Computation, 1(4), 523–536, 2011.
  22. Miranville A., Asymptotic behavior of a generalized Cahn–Hilliard equation with a proliferation term, Applicable Analysis An International Journal, 92(6), 1308–1321, 2013.
  23. Miranville A., Existence of solutions to a Cahn–Hilliard type equation with a logarithmic nonlinear term, Mediterranean Journal of Mathematics, 16(6), 1–18, 2019.
  24. Ern A., Guermond J.L., Éléments Finis: Théorie, Applications, Mise en Oeuvre, Springer, Berlin, 2002.
  25. Cherfils L., Fakih H., Miranville A., A complex version of the Cahn-Hilliard equation for grayscale image inpainting, Multiscale Modeling Simulation, 15(1), 575–605, 2017.
  26. Conti M., Gatti S., Miranville A., Multi-component Cahn-Hilliard systems with dynamic boundary conditions, Nonlinear Analysis: Real World Applications, 25, 137–166, 2015.
Language: English
Page range: 233 - 250
Submitted on: Aug 18, 2023
Accepted on: Nov 16, 2023
Published on: Jan 10, 2024
Published by: Harran University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Hussein Fakih, Mahdi Faour, Wafa Saoud, Yahia Awad, published by Harran University
This work is licensed under the Creative Commons Attribution 4.0 License.