The extension and generalisation of FKEs involving many fractional operators were found in (Saxena et al. [23], Saxena et al. [24], Chouhan and Sarwat [25], Chouhan et al. [26], Agarwal et al. [27], Agarwal et al. [28], Agarwal and Nisar [29], Baleanu et al. [30], Nisar et al. [31], Nisar [32], Şahin and Yağcı [33], Yağcı and Şahin [34], Akel et al. [35], and Hidan et al. [36]).
2.1Solution of generalized FKEs involving generalized Hurwitz-Lerch Zeta function
Here, we present the solution of the generalised FKEs by considering generalized Hurwitz-Lerch Zeta function (4).
Theorem 1
If 𝔡 > 0, 𝔵 > 0; λ, μ, δ ∈ ℂ, and 𝔡 ≠ δ be such that
a,{\kern 1pt} \omega {\kern 1pt} \in {\kern 1pt} \mathbb{C}\backslash \mathbb{Z}_0^ -
; σ, ρ, κ∈ ℝ+, then the solution of the following fractional equation
(13)
\mathfrak{z}(\mathfrak{y}) - {\mathfrak{z}_0}{\kern 1pt} \Phi_{\lambda ,{\kern 1pt} \mu ;{\kern 1pt} \omega }^{(\sigma ,{\kern 1pt} \rho ,{\kern 1pt} \kappa )}({\mathfrak{d}^\mathfrak{x}}{\mathfrak{y}^\mathfrak{x}},s,a) = {\kern 1pt} - {\delta^\mathfrak{x}}{{\kern 1pt}_0}\mathcal{D}_\mathfrak{y}^{ - \mathfrak{x}}
is given by
(14)
\mathfrak{z}(\mathfrak{y}) = {\mathfrak{z}_0}{\kern 1pt} {\kern 1pt} \sum\limits_{n = 0}^\infty \frac{{{{(\lambda )}_{\sigma n}}{\kern 1pt} {{(\mu )}_{\rho n}}{\kern 1pt} \Gamma (\mathfrak{x}n + 1){{({\mathfrak{d}^\mathfrak{x}}{\mathfrak{y}^\mathfrak{x}})}^n}}}{{{{(\omega )}_{\kappa n}}{\kern 1pt} n!{\kern 1pt} {{(n + a)}^s}}}{\kern 1pt} {E_{\mathfrak{x},\mathfrak{x}n + 1}}( - {\delta^\mathfrak{x}}{\kern 1pt} {\mathfrak{y}^\mathfrak{x}}),
where ℰ𝔵,𝔵𝔫+1(.) is the Mittag-Leffler function (Mittag and Leffler [37]).
Proof
The Laplace transform of the Riemann-Liouville fractional integral operator is given by Srivastava and Saxena [18], and Erdélyi et al. [20]:
(15)
\mathfrak{L}{\kern 1pt} {\{_0}\mathcal{D}_\mathfrak{y}^{ - \mathfrak{x}}f(\mathfrak{y});s\} = {\kern 1pt} {s^{ - \mathfrak{x}}}{\kern 1pt} F(s)
where F(p) is given in Erdélyi et al. [20], Srivastava and Karlsson [21], and Srivastava and Manocha [22]. Now, applying the Laplace transform to both sides of (13), we obtain
(16)
\matrix{\mathfrak{L}\{ \mathfrak{z}(\mathfrak{y});p\} = {\mathfrak{z}_0}\mathfrak{L}\{ \Phi_{\lambda ,{\kern 1pt} \mu ;{\kern 1pt} \omega }^{(\sigma ,{\kern 1pt} \rho ,{\kern 1pt} \kappa )}({\mathfrak{d}^\mathfrak{x}}{\mathfrak{y}^\mathfrak{x}},s,a);p\} - {\delta^\mathfrak{x}}\mathfrak{L}{\{_0}\mathcal{D}_\mathfrak{y}^{ - \mathfrak{x}}\mathfrak{z}(\mathfrak{y});p\} \\\mathfrak{z}(p) = {\mathfrak{z}_0}\{ \int_0^\infty {{e^{ - p\mathfrak{y}}}\sum\limits_{n = 0}^\infty {\frac{{{{(\lambda )}_{\sigma n}}{{(\mu )}_{\rho n}}{{({\mathfrak{d}^\mathfrak{x}}{\mathfrak{y}^\mathfrak{x}})}^n}}}{{{{(\omega )}_{\kappa n}}n!{{(n + a)}^s}}}} d\mathfrak{y}} \} - {\delta^\mathfrak{x}}{p^{ - \mathfrak{x}}}\mathfrak{z}(p)\\\mathfrak{z}(p) + {\delta^\mathfrak{x}}{p^{ - \mathfrak{x}}}\mathfrak{z}(p)\\\,\,\,\,\,\,\,\,\, = {\mathfrak{z}_0}\sum\limits_{n = 0}^\infty {\frac{{{{(\lambda )}_{\sigma n}}{{(\mu )}_{\rho n}}{\mathfrak{d}^{\mathfrak{x}n}}}}{{{{(\omega )}_{\kappa n}}n!{{(n + a)}^s}}}} \int_0^\infty {{e^{ - p\mathfrak{y}}}{\mathfrak{y}^{\mathfrak{x}n}}d\mathfrak{y}} \\\,\,\,\,\,\,\,\,\, = {\mathfrak{z}_0}\sum\limits_{n = 0}^\infty {\frac{{{{(\lambda )}_{\sigma n}}{{(\mu )}_{\rho n}}{\mathfrak{d}^{\mathfrak{x}n}}}}{{{{(\omega )}_{\kappa n}}n!{{(n + a)}^s}}}} \frac{{\Gamma (\mathfrak{x}n + 1)}}{{{p^{\mathfrak{x}n + 1}}}}\\\mathfrak{z}(p) = {\mathfrak{z}_0}\sum\limits_{n = 0}^\infty {\frac{{{{(\lambda )}_{\sigma n}}z\mu {)_{\rho n}}\Gamma (\mathfrak{x}n + 1){\mathfrak{d}^{\mathfrak{x}n}}}}{{{{(\omega )}_{\kappa n}}n!{{(n + a)}^s}}}} {p^{ - (\mathfrak{x}n + 1)}}\sum\limits_{r = 0}^\infty {[ - {{(\frac{p}{\delta })}^{ - \mathfrak{x}}}} {]^r}.}
The inverse Laplace transform of (16) is given by Erdélyi et al. [20]
(17)
{\mathfrak{L}^{ - 1}}\{ {p^{ - \mathfrak{x}}};\mathfrak{y}\} = \frac{{{t^{\mathfrak{x} - 1}}}}{{\Gamma (\mathfrak{x})}},{\kern 1pt} {\kern 1pt} {\kern 1pt} (\Re (\mathfrak{x}) > 0),
we get
(18)
\matrix{{{L^{ - 1}}\{ \mathfrak{z}(p)\} = {\kern 1pt} {\mathfrak{z}_0}{\kern 1pt} \sum\limits_{n = 0}^\infty \frac{{{{(\lambda )}_{\sigma n}}{\kern 1pt} {{(\mu )}_{\rho n}}{\kern 1pt} \Gamma (\mathfrak{x}n + 1){\kern 1pt} {\mathfrak{d}^{\mathfrak{x}n}}}}{{{{(\omega )}_{\kappa n}}{\kern 1pt} n!{\kern 1pt} {{(n + a)}^s}}}}\\{ \times {\kern 1pt} {L^{ - 1}}\left\{ {{p^{ - (\mathfrak{x}n + 1)}}\sum\limits_{r = 0}^\infty {{\left[ { - {{(\frac{p}{\delta })}^{ - \mathfrak{x}}}} \right]}^r}} \right\}}\\{\mathfrak{z}(\mathfrak{y}) = {\kern 1pt} \sum\limits_{n = 0}^\infty \frac{{{{(\lambda )}_{\sigma n}}{\kern 1pt} {{(\mu )}_{\rho n}}{\kern 1pt} \Gamma (\mathfrak{x}n + 1){{({\mathfrak{d}^\mathfrak{x}}{\mathfrak{y}^\mathfrak{x}})}^n}}}{{{{(\omega )}_{\kappa n}}{\kern 1pt} n!{\kern 1pt} {{(n + a)}^s}}}\sum\limits_{r = 0}^\infty {\kern 1pt} {{( - 1)}^r}{\delta^{\mathfrak{x}r}}{\kern 1pt} \frac{{{\mathfrak{y}^{\mathfrak{x}r}}}}{{\Gamma (\mathfrak{x}n + \mathfrak{x}r + 1)}}.}}
So, we can yield the required result (14).
Theorem 2
If 𝔡 > 0, 𝔵 > 0; λ, μ ∈ ℂ be such that
{\kern 1pt} a,{\kern 1pt} \omega {\kern 1pt} \in {\kern 1pt} \mathbb{C}\backslash \mathbb{Z}_0^ -
; σ, ρ, κ ∈ ℝ+, then the solution of the following fractional equation
(19)
\mathfrak{z}(\mathfrak{y}) - {\mathfrak{z}_0}{\kern 1pt} \Phi_{\lambda ,{\kern 1pt} \mu ;{\kern 1pt} \omega }^{(\sigma ,{\kern 1pt} \rho ,{\kern 1pt} \kappa )}({\mathfrak{d}^\mathfrak{x}}{\mathfrak{y}^\mathfrak{x}},s,a) = {\kern 1pt} - {\mathfrak{d}^\mathfrak{x}}{{\kern 1pt}_0}\mathcal{D}_\mathfrak{y}^{ - \mathfrak{x}}
is given by
(20)
\mathfrak{z}(\mathfrak{y}) = {\mathfrak{z}_0}{\kern 1pt} {\kern 1pt} \sum\limits_{n = 0}^\infty \frac{{{{(\lambda )}_{\sigma n}}{\kern 1pt} {{(\mu )}_{\rho n}}{\kern 1pt} \Gamma (\mathfrak{x}n + 1){{({\mathfrak{d}^\mathfrak{x}}{\mathfrak{y}^\mathfrak{x}})}^n}}}{{{{(\omega )}_{\kappa n}}{\kern 1pt} n!{\kern 1pt} {{(n + a)}^s}}}{\kern 1pt} {\mathcal{E}_{\mathfrak{x},\mathfrak{x}n + 1}}( - {\mathfrak{d}^\mathfrak{x}}{\kern 1pt} {\mathfrak{y}^\mathfrak{x}}),
where ℰ𝔵,𝔵𝔫+1 (.) is the Mittag-Leffler function (Mittag-Leffler [37]).
Proof
The proof of Theorem 2 is parallel to the proof of Theorem 1, thus the details are omitted.
Theorem 3
If 𝔵 > 0; λ, μ, δ ∈ ℂ be such that
{\kern 1pt} a,{\kern 1pt} \omega {\kern 1pt} \in {\kern 1pt} \mathbb{C}\backslash \mathbb{Z}_0^ -
; σ, ρ, κ ∈ ℝ+, then the solution of the following fractional equation
(21)
\mathfrak{z}(\mathfrak{y}) - {\mathfrak{z}_0}{\kern 1pt} \Phi_{\lambda ,{\kern 1pt} \mu ;{\kern 1pt} \omega }^{(\sigma ,{\kern 1pt} \rho ,{\kern 1pt} \kappa )}(\mathfrak{y},s,a) = {\kern 1pt} - {\delta^\mathfrak{x}}{{\kern 1pt}_0}\mathcal{D}_\mathfrak{y}^{ - \mathfrak{x}}
is given by
(22)
\mathfrak{z}(\mathfrak{y}) = {\mathfrak{z}_0}{\kern 1pt} {\kern 1pt} \sum\limits_{n = 0}^\infty \frac{{{{(\lambda )}_{\sigma n}}{\kern 1pt} {{(\mu )}_{\rho n}}{\kern 1pt} \Gamma (n + 1){\kern 1pt} {t^n}}}{{{{(\omega )}_{\kappa n}}{\kern 1pt} n!{\kern 1pt} {{(n + a)}^s}}}{\kern 1pt} {\mathcal{E}_{\mathfrak{x},n + 1}}( - {\delta^\mathfrak{x}}{\kern 1pt} {t^\mathfrak{x}}),
where ℰ𝔵,𝔫+1 (.) is the Mittag-Leffler function (Mittag-Leffler [37]).
Proof
Theorem 3 can be easily acquired from Theorem 1, so the details are omitted.
2.2Special cases
Choosing λ = σ = 1 in the equation (4), which is the generalized Hurwitz-Lerch Zeta function
\Phi_{\mu ;{\kern 1pt} \omega }^{\rho ,{\kern 1pt} \kappa }(z,s,a)
introduced and studied by Lin and Srivastava [4].
Applying λ = σ = 1 in Theorem 1, Theorem 2, and Theorem 3 obtained the following forms:
Corollary 4
If 𝔡 > 0, 𝔵 > 0; μ, δ ∈ ℂ, and 𝔡 ≠ δ be such that
{\kern 1pt} a,{\kern 1pt} \omega {\kern 1pt} \in {\kern 1pt} \mathbb{C}\backslash \mathbb{Z}_0^ -
; ρ, κ ∈ ℝ+, then the solution of the following fractional equation
(23)
\mathfrak{z}(\mathfrak{y}) - {\mathfrak{z}_0}{\kern 1pt} \Phi_{\mu ;{\kern 1pt} \omega }^{(\rho ,{\kern 1pt} \kappa )}({\mathfrak{d}^\mathfrak{x}}{\mathfrak{y}^\mathfrak{x}},s,a) = {\kern 1pt} - {\delta^\mathfrak{x}}{{\kern 1pt}_0}\mathcal{D}_t^{ - \mathfrak{x}}
is given by
(24)
\mathfrak{z}(\mathfrak{y}) = {\mathfrak{z}_0}{\kern 1pt} {\kern 1pt} \sum\limits_{n = 0}^\infty \frac{{{{(\mu )}_{\rho n}}{\kern 1pt} \Gamma (\mathfrak{x}n + 1){{({\mathfrak{d}^\mathfrak{x}}{\mathfrak{y}^\mathfrak{x}})}^n}}}{{{{(\omega )}_{\kappa n}}{\kern 1pt} {{(n + a)}^s}}}{\kern 1pt} {\mathcal{E}_{\mathfrak{x},\mathfrak{x}n + 1}}( - {\delta^\mathfrak{x}}{\kern 1pt} {\mathfrak{y}^\mathfrak{x}}).
Corollary 5
If 𝔡 > 0, x > 0; μ ∈ ℂ be such that
{\kern 1pt} a,{\kern 1pt} \omega {\kern 1pt} \in {\kern 1pt} \mathbb{C}\backslash \mathbb{Z}_0^ -
; ρ, κ ∈ ℝ+, then the solution of the following fractional equation
(25)
\mathfrak{z}(\mathfrak{y}) - {\mathfrak{z}_0}{\kern 1pt} \Phi_{\mu ;{\kern 1pt} \omega }^{(\rho ,{\kern 1pt} \kappa )}({\mathfrak{d}^\mathfrak{x}}{\mathfrak{y}^\mathfrak{x}},s,a) = {\kern 1pt} - {\mathfrak{d}^\mathfrak{x}}{{\kern 1pt}_0}\mathcal{D}_\mathfrak{y}^{ - \mathfrak{x}}
is given by
(26)
\mathfrak{z}(\mathfrak{y}) = {\mathfrak{z}_0}{\kern 1pt} {\kern 1pt} \sum\limits_{n = 0}^\infty \frac{{{{(\mu )}_{\rho n}}{\kern 1pt} \Gamma (\mathfrak{x}n + 1){{({\mathfrak{d}^\mathfrak{x}}{\mathfrak{y}^\mathfrak{x}})}^n}}}{{{{(\omega )}_{\kappa n}}{\kern 1pt} {{(n + a)}^s}}}{\kern 1pt} {{\mathcal E}_{\mathfrak{x},\mathfrak{x}n + 1}}( - {\mathfrak{d}^\mathfrak{x}}{\kern 1pt} {\mathfrak{y}^\mathfrak{x}}).
Corollary 6
If μ, δ∈ ℂ be such that
{\kern 1pt} a,{\kern 1pt} \omega {\kern 1pt} \in {\kern 1pt} \mathbb{C}\backslash \mathbb{Z}_0^ -
; ρ, κ ∈ ℝ+, then the solution of the following fractional equation
(27)
\mathfrak{z}(\mathfrak{y}) - {\mathfrak{z}_0}{\kern 1pt} \Phi_{\mu ;{\kern 1pt} \omega }^{(\rho ,{\kern 1pt} \kappa )}(\mathfrak{y},s,a) = {\kern 1pt} - {\delta^\mathfrak{x}}{{\kern 1pt}_0}\mathcal{D}_\mathfrak{y}^{ - \mathfrak{x}}
is given by
(28)
\mathfrak{z}(\mathfrak{y}) = {\mathfrak{z}_0}{\kern 1pt} {\kern 1pt} \sum\limits_{n = 0}^\infty \frac{{{{(\mu )}_{\rho n}}{\kern 1pt} \Gamma (n + 1){\mathfrak{y}^n}}}{{{{(\omega )}_{\kappa n}}{\kern 1pt} {{(n + a)}^s}}}{\kern 1pt} {\mathcal{E}_{\mathfrak{x},n + 1}}( - {\delta^\mathfrak{x}}{\kern 1pt} {\mathfrak{y}^\mathfrak{x}}).
Setting σ = ρ = κ = 1 in the equation (4), which is the generalized Hurwitz-Lerch Zeta function Φλ,μ;ω(z, s, a) introduced and studied by Garg et al. [8].
Applying σ = ρ = κ = 1 in Theorem 1, Theorem 2, and Theorem 3 obtained the following forms:
Corollary 7
If 𝔡 > 0, 𝔵 > 0; λ, μ, δ ∈ ℂ, and 𝔡 ≠ δ be such that
{\kern 1pt} a,{\kern 1pt} \omega {\kern 1pt} \in {\kern 1pt} \mathbb{C}\backslash \mathbb{Z}_0^ -
, then the solution of the following fractional equation
(29)
\mathfrak{z}(\mathfrak{y}) - {\mathfrak{z}_0}{\kern 1pt} {\Phi_{\lambda ,{\kern 1pt} \mu ;{\kern 1pt} \omega }}({\mathfrak{d}^\mathfrak{x}}{\mathfrak{y}^\mathfrak{x}},s,a) = {\kern 1pt} - {\delta^\mathfrak{x}}{{\kern 1pt}_0}\mathcal{D}_\mathfrak{y}^{ - \mathfrak{x}}
is given by
(30)
\mathfrak{z}(\mathfrak{y}) = {\mathfrak{z}_0}{\kern 1pt} {\kern 1pt} \sum\limits_{n = 0}^\infty \frac{{{{(\lambda )}_n}{\kern 1pt} {{(\mu )}_n}{\kern 1pt} \Gamma (\mathfrak{x}n + 1){{({\mathfrak{d}^\mathfrak{x}}{\mathfrak{y}^\mathfrak{x}})}^n}}}{{{{(\omega )}_n}{\kern 1pt} n!{\kern 1pt} {{(n + a)}^s}}}{\kern 1pt} {\mathcal{E}_{\mathfrak{x},\mathfrak{x}n + 1}}( - {\delta^\mathfrak{x}}{\kern 1pt} {\mathfrak{y}^\mathfrak{x}}).
Corollary 8
If 𝔡 > 0, 𝔵 > 0; λ, μ ∈ ℂ be such that
{\kern 1pt} a,{\kern 1pt} \omega {\kern 1pt} \in {\kern 1pt} \mathbb{C}\backslash \mathbb{Z}_0^ -
, then the solution of the following fractional equation
(31)
\mathfrak{z}(\mathfrak{y}) - {\mathfrak{z}_0}{\kern 1pt} {\Phi_{\lambda ,{\kern 1pt} \mu ;{\kern 1pt} \omega }}({\mathfrak{d}^\mathfrak{x}}{\mathfrak{y}^\mathfrak{x}},s,a) = {\kern 1pt} - {\mathfrak{d}^\mathfrak{x}}{{\kern 1pt}_0}\mathcal{D}_\mathfrak{y}^{ - \mathfrak{x}}
is given by
(32)
\mathfrak{z}(\mathfrak{y}) = {\mathfrak{z}_0}{\kern 1pt} {\kern 1pt} \sum\limits_{n = 0}^\infty \frac{{{{(\lambda )}_n}{\kern 1pt} {{(\mu )}_n}{\kern 1pt} \Gamma (\mathfrak{x}n + 1){{({\mathfrak{d}^\mathfrak{x}}{\mathfrak{y}^\mathfrak{x}})}^n}}}{{{{(\omega )}_n}{\kern 1pt} n!{\kern 1pt} {{(n + a)}^s}}}{\kern 1pt} {\mathcal{E}_{\mathfrak{x},\mathfrak{x}n + 1}}( - {\mathfrak{d}^\mathfrak{x}}{\kern 1pt} {\mathfrak{y}^\mathfrak{x}}).
Corollary 9
If λ, μ, δ ∈ ℂ be such that
{\kern 1pt} a,{\kern 1pt} \omega {\kern 1pt} \in {\kern 1pt} \mathbb{C}\backslash \mathbb{Z}_0^ -
, then the solution of the following fractional equation
(33)
\mathfrak{z}(\mathfrak{y}) - {\mathfrak{z}_0}{\kern 1pt} {\Phi_{\lambda ,{\kern 1pt} \mu ;{\kern 1pt} \omega }}(\mathfrak{y},s,a) = {\kern 1pt} - {\delta^\mathfrak{x}}{{\kern 1pt}_0}\mathcal{D}_\mathfrak{y}^{ - \mathfrak{x}}
is given by
(34)
\mathfrak{z}(\mathfrak{y}) = {\mathfrak{z}_0}{\kern 1pt} {\kern 1pt} \sum\limits_{n = 0}^\infty \frac{{{{(\lambda )}_n}{\kern 1pt} {{(\mu )}_n}{\kern 1pt} \Gamma (n + 1){t^n}}}{{{{(\omega )}_n}{\kern 1pt} n!{\kern 1pt} {{(n + a)}^s}}}{\kern 1pt} {\mathcal{E}_{\mathfrak{x},n + 1}}( - {\delta^\mathfrak{x}}{\kern 1pt} {t^\mathfrak{x}}).
Upon taking σ = ρ = κ = 1 and λ = ω in the equation (4), which is the generalized Hurwitz-Lerch Zeta function
\Phi_\mu^ \star (z,s,a)
introduced and studied by Goyal and Laddha [3].
Applying σ = ρ = κ = 1 and λ = ω in Theorem 1, Theorem 2, and Theorem 3 obtained the following forms:
Corollary 10
If 𝔡 > 0, 𝔵 > 0; μ, δ ∈ ℂ, and 𝔡 ≠ δ be such that
{\kern 1pt} a \in {\kern 1pt} \mathbb{C}\backslash \mathbb{Z}_0^ -
, then the solution of the following fractional equation
(35)
\mathfrak{z}(\mathfrak{y}) - {\mathfrak{z}_0}{\kern 1pt} \Phi_\mu^ \star ({\mathfrak{d}^\mathfrak{x}}{\mathfrak{y}^\mathfrak{x}},s,a) = {\kern 1pt} - {\delta^\mathfrak{x}}{{\kern 1pt}_0}\mathcal{D}_\mathfrak{y}^{ - \mathfrak{x}}
is given by
(36)
\mathfrak{z}(\mathfrak{y}) = {\mathfrak{z}_0}{\kern 1pt} {\kern 1pt} \sum\limits_{n = 0}^\infty \frac{{{{(\mu )}_n}{\kern 1pt} \Gamma (\mathfrak{x}n + 1){{({\mathfrak{d}^\mathfrak{x}}{\mathfrak{y}^\mathfrak{x}})}^n}}}{{n!{\kern 1pt} {{(n + a)}^s}}}{\kern 1pt} {\mathcal{E}_{\mathfrak{x},\mathfrak{x}n + 1}}( - {\delta^\mathfrak{x}}{\kern 1pt} {\mathfrak{y}^\mathfrak{x}}).
Corollary 11
If 𝔡 > 0, 𝔵 > 0; μ ∈ ℂ be such that
{\kern 1pt} a \in {\kern 1pt} \mathbb{C}\backslash \mathbb{Z}_0^ -
, then the solution of the following fractional equation
(37)
\mathfrak{z}(\mathfrak{y}) - {\mathfrak{z}_0}{\kern 1pt} \Phi_\mu^ \star ({\mathfrak{d}^\mathfrak{x}}{\mathfrak{y}^\mathfrak{x}},s,a) = {\kern 1pt} - {\mathfrak{d}^\mathfrak{x}}{{\kern 1pt}_0}\mathcal{D}_\mathfrak{y}^{ - \mathfrak{x}}
is given by
(38)
\mathfrak{z}(\mathfrak{y}) = {\mathfrak{z}_0}{\kern 1pt} {\kern 1pt} \sum\limits_{n = 0}^\infty \frac{{{{(\mu )}_n}{\kern 1pt} \Gamma (\mathfrak{x}n + 1){{({\mathfrak{d}^\mathfrak{x}}{\mathfrak{y}^\mathfrak{x}})}^n}}}{{n!{\kern 1pt} {{(n + a)}^s}}}{\kern 1pt} {\mathcal{E}_{\mathfrak{x},\mathfrak{x}n + 1}}( - {\mathfrak{d}^\mathfrak{x}}{\kern 1pt} {\mathfrak{y}^\mathfrak{x}}).
Corollary 12
If λ, μ, δ ∈ ℂ be such that
{\kern 1pt} a{\kern 1pt} \in {\kern 1pt} \mathbb{C}\backslash \mathbb{Z}_0^ -
, then the solution of the following fractional equation
(39)
\mathfrak{z}(\mathfrak{y}) - {\mathfrak{z}_0}{\kern 1pt} \Phi_\mu^ \star (\mathfrak{y},s,a) = {\kern 1pt} - {\delta^\mathfrak{x}}{{\kern 1pt}_0}\mathcal{D}_\mathfrak{y}^{ - \mathfrak{x}}
is given by
(40)
\mathfrak{z}(\mathfrak{y}) = {\mathfrak{z}_0}{\kern 1pt} {\kern 1pt} \sum\limits_{n = 0}^\infty \frac{{{{(\mu )}_n}{\kern 1pt} \Gamma (n + 1){t^n}}}{{n!{\kern 1pt} {{(n + a)}^s}}}{\kern 1pt} {\mathcal{E}_{\mathfrak{x},n + 1}}( - {\delta^\mathfrak{x}}{\kern 1pt} {t^\mathfrak{x}}).
Upon taking σ = ρ = μ = 1 and
z = {\kern 1pt} \frac{z}{\lambda }
. Then, the limit case of (4) when λ → ∞, would yield the Mittag-Leffler type function
\mathcal{E}_{\kappa ,{\kern 1pt} \omega }^{(a)}(s;t)
studied by Barnes [38], that is,
(41)
\matrix{{\mathcal{E}_{\kappa ,{\kern 1pt} \omega }^{(a)}(s;z) = {\kern 1pt} \sum\limits_{n = 0}^\infty {\kern 1pt} \frac{{{z^n}}}{{{{(n + a)}^s}{\kern 1pt} \Gamma (\omega + \kappa n)}},}\\{(a,{\kern 1pt} \omega \in {\kern 1pt} \mathbb{C}\backslash \mathbb{Z}_0^ - ;{\kern 1pt} \Re (\kappa ) > 0;{\kern 1pt} s,{\kern 1pt} z{\kern 1pt} \in {\kern 1pt} \mathbb{C}).}}
Applying σ = ρ = μ = 1 and
z = {\kern 1pt} \frac{z}{\lambda }
. Then, the limit case of (4) when λ → ∞ in Theorem 1, Theorem 2, and Theorem 3 obtained the following forms:
Corollary 13
If 𝔡 > 0, 𝔵 > 0; κ, δ ∈ ℂ, and 𝔡 ≠ δ be such that
{\kern 1pt} a,{\kern 1pt} \omega {\kern 1pt} \in {\kern 1pt} \mathbb{C}\backslash \mathbb{Z}_0^ -
, then the solution of the following fractional equation
(42)
\mathfrak{z}(\mathfrak{y}) - {\mathfrak{z}_0}{\kern 1pt} \mathcal{E}_{\kappa ,{\kern 1pt} \omega }^{(a)}(s;{\mathfrak{d}^\mathfrak{x}}{\mathfrak{y}^\mathfrak{x}}) = {\kern 1pt} - {\delta^\mathfrak{x}}{{\kern 1pt}_0}\mathcal{D}_\mathfrak{y}^{ - \mathfrak{x}}
is given by
(43)
\mathfrak{z}(\mathfrak{y}) = {\mathfrak{z}_0}{\kern 1pt} {\kern 1pt} \sum\limits_{n = 0}^\infty \frac{{\Gamma (\mathfrak{x}n + 1){{({\mathfrak{d}^\mathfrak{x}}{\mathfrak{y}^\mathfrak{x}})}^n}}}{{{{(n + a)}^s}{\kern 1pt} \Gamma (\omega + \kappa n)}}{\kern 1pt} {\mathcal{E}_{\mathfrak{x},\mathfrak{x}n + 1}}( - {\delta^\mathfrak{x}}{\kern 1pt} {\mathfrak{y}^\mathfrak{x}}).
Corollary 14
If 𝔡 > 0, 𝔵 > 0; κ ∈ ℂ be such that
{\kern 1pt} a,{\kern 1pt} \omega {\kern 1pt} \in {\kern 1pt} \mathbb{C}\backslash \mathbb{Z}_0^ -
, then the solution of the following fractional equation
(44)
\mathfrak{z}(\mathfrak{y}) - {\mathfrak{z}_0}{\kern 1pt} \mathcal{E}_{\kappa ,{\kern 1pt} \omega }^{(a)}(s;{\mathfrak{d}^\mathfrak{x}}{\mathfrak{y}^\mathfrak{x}}) = {\kern 1pt} - {\mathfrak{d}^\mathfrak{x}}{{\kern 1pt}_0}\mathcal{D}_\mathfrak{y}^{ - \mathfrak{x}}
is given by
(45)
\mathfrak{z}(\mathfrak{y}) = {\mathfrak{z}_0}{\kern 1pt} {\kern 1pt} \sum\limits_{n = 0}^\infty \frac{{\Gamma (\mathfrak{x}n + 1){{({\mathfrak{d}^\mathfrak{x}}{\mathfrak{y}^\mathfrak{x}})}^n}}}{{{{(n + a)}^s}{\kern 1pt} \Gamma (\omega + \kappa n)}}{\kern 1pt} {\mathcal{E}_{\mathfrak{x},\mathfrak{x}n + 1}}( - {\mathfrak{d}^\mathfrak{x}}{\kern 1pt} {\mathfrak{y}^\mathfrak{x}}).
Corollary 15
If κ, δ ∈ ℂ be such that
{\kern 1pt} a,{\kern 1pt} \omega {\kern 1pt} \in {\kern 1pt} \mathbb{C}\backslash \mathbb{Z}_0^ -
, then the solution of the following fractional equation
(46)
\mathfrak{z}(\mathfrak{y}) - {\mathfrak{z}_0}{\kern 1pt} \mathcal{E}_{\kappa ,{\kern 1pt} \omega }^{(a)}(s;\mathfrak{y}) = {\kern 1pt} - {\delta^\mathfrak{x}}{{\kern 1pt}_0}\mathcal{D}_\mathfrak{y}^{ - \mathfrak{x}}
is given by
(47)
\mathfrak{z}(\mathfrak{y}) = {\mathfrak{z}_0}{\kern 1pt} {\kern 1pt} \sum\limits_{n = 0}^\infty \frac{{\Gamma (n + 1){t^n}}}{{{{(n + a)}^s}{\kern 1pt} \Gamma (\omega + \kappa n)}}{\kern 1pt} {\mathcal{E}_{\mathfrak{x},n + 1}}( - {\delta^\mathfrak{x}}{\kern 1pt} {\mathfrak{y}^\mathfrak{x}}).
Finally, upon setting λ, μ, ω, σ, ρ, κ = 1 in the equation (4) gives the equation (1) [1, 2].
Choosing λ, μ, ω, σ, ρ, κ = 1 in Theorem 1, Theorem 2, and Theorem 3 obtained the following forms:
Corollary 16
If 𝔡 > 0; δ, 𝔵 ℂ,
{\kern 1pt} a \in {\kern 1pt} \mathbb{C}\backslash \mathbb{Z}_0^ -
, and 𝔡 = δ, then the solution of the following fractional equation
(48)
\mathfrak{z}(\mathfrak{y}) - {\mathfrak{z}_0}{\kern 1pt} \Phi ({\mathfrak{d}^\mathfrak{x}}{\mathfrak{y}^\mathfrak{x}},s,a) = {\kern 1pt} - {\delta^\mathfrak{x}}{{\kern 1pt}_0}\mathcal{D}_\mathfrak{y}^{ - \mathfrak{x}}
is given by
(49)
\mathfrak{z}(\mathfrak{y}) = {\mathfrak{z}_0}{\kern 1pt} {\kern 1pt} \sum\limits_{n = 0}^\infty \frac{{\Gamma (\mathfrak{x}n + 1){{({\mathfrak{d}^\mathfrak{x}}{\mathfrak{y}^\mathfrak{x}})}^n}}}{{{{(n + a)}^s}}}{\kern 1pt} {\mathcal{E}_{\mathfrak{x},\mathfrak{x}n + 1}}( - {\delta^\mathfrak{x}}{\kern 1pt} {\mathfrak{y}^\mathfrak{x}}).
Corollary 17
If 𝔡 > 0; 𝔵 ∈ ℂ,
{\kern 1pt} a \in {\kern 1pt} \mathbb{C}\backslash \mathbb{Z}_0^ -
, then the solution of the following fractional equation
(50)
\mathfrak{z}(\mathfrak{y}) - {\mathfrak{z}_0}{\kern 1pt} \Phi ({\mathfrak{d}^\mathfrak{x}}{\mathfrak{y}^\mathfrak{x}},s,a) = {\kern 1pt} - {\mathfrak{d}^\mathfrak{x}}{{\kern 1pt}_0}\mathcal{D}_\mathfrak{y}^{ - \mathfrak{x}}
is given by
(51)
\mathfrak{z}(\mathfrak{y}) = {\mathfrak{z}_0}{\kern 1pt} {\kern 1pt} \sum\limits_{n = 0}^\infty \frac{{\Gamma (\mathfrak{x}n + 1){{({\mathfrak{d}^\mathfrak{x}}{\mathfrak{y}^\mathfrak{x}})}^n}}}{{{{(n + a)}^s}}}{\kern 1pt} {\mathcal{E}_{\mathfrak{x},\mathfrak{x}n + 1}}( - {\mathfrak{d}^\mathfrak{x}}{\kern 1pt} {\mathfrak{y}^\mathfrak{x}}).
Corollary 18
If δ ∈ ℂ,
{\kern 1pt} a \in {\kern 1pt} \mathbb{C}\backslash \mathbb{Z}_0^ -
, then the solution of the following fractional equation
(52)
\mathfrak{z}(\mathfrak{y}) - {\mathfrak{z}_0}{\kern 1pt} \Phi (\mathfrak{y},s,a) = {\kern 1pt} - {\delta^\mathfrak{x}}{{\kern 1pt}_0}\mathcal{D}_\mathfrak{y}^{ - \mathfrak{x}}
is given by
(53)
\mathfrak{z}(\mathfrak{y}) = {\mathfrak{z}_0}{\kern 1pt} {\kern 1pt} \sum\limits_{n = 0}^\infty \frac{{\Gamma (n + 1){t^n}}}{{{{(n + a)}^s}}}{\kern 1pt} {\mathcal{E}_{\mathfrak{x},n + 1}}( - {\delta^\mathfrak{x}}{\kern 1pt} {t^\mathfrak{x}}).