2Preliminaries
The well-known lower and upper gamma functions of incomplete type [16] γ (𝔳,𝔜) and Γ (𝔳,𝔜) respectively, are presented as:
(1)
\gamma (\mathfrak{v},\mathfrak{Y}) = \int_0^\mathfrak{Y} {\mathfrak{u}^{\mathfrak{v} - 1}}\;{e^{ - \mathfrak{u}}}\;d\mathfrak{u},\quad \quad (\Re (\mathfrak{v}) > 0;{\kern 1pt} {\kern 1pt} \mathfrak{Y} \mathbin{\lower.3ex\hbox{$\buildrel>\over{\smash{\scriptstyle=}\vphantom{_x}}$}} 0),
and
(2)
\Gamma (\mathfrak{v},\mathfrak{Y}) = \int_\mathfrak{Y}^\infty {\mathfrak{u}^{\mathfrak{v} - 1}}\;{e^{ - \mathfrak{u}}}\;d\mathfrak{u},\quad \quad (\mathfrak{Y} \mathbin{\lower.3ex\hbox{$\buildrel>\over{\smash{\scriptstyle=}\vphantom{_x}}$}} 0;{\kern 1pt} {\kern 1pt} \Re (\mathfrak{v}) > 0\quad when\quad \mathfrak{Y} = 0).
The following connection (sometimes referred to as the decomposition formula) is satisfied by these incomplete gamma functions.
(3)
\gamma (\mathfrak{v},\mathfrak{Y}) + \Gamma (\mathfrak{v},\mathfrak{Y}) = \Gamma (\mathfrak{v}),\quad \quad (\Re (\mathfrak{v}) > 0).
The Srivastava investigated a broad category of polynomials [17], which is described as follows (see [18] also):
(4)
S_\mathfrak{Q}^\mathfrak{P}[t] = \sum\limits_{\mathfrak{O} = 0}^{[\mathfrak{Q}\mathfrak{P}]} \frac{{{{( - \mathfrak{Q})}_{\mathfrak{P}\mathfrak{O}}}}}{{\mathfrak{O}!}}{A_{\mathfrak{Q},\mathfrak{O}}}{\kern 1pt} {t^\mathfrak{O}}{\kern 1pt} ,
where 𝔓 ∈ ℤ+ and A𝔔,𝔒 are real or complex numbers arbitrary constants.
The notations [k] indicates the floor function and (κ)μ denote the Pochhammer symbol described by:
{(\kappa )_0} = 1\quad and\quad {(\kappa )_\mu } = \frac{{\Gamma (\kappa + \mu )}}{{\Gamma (\kappa )}},\quad (\mu \in \mathbb{C}),
in the form of the Gamma function. Numerous FC results relating to the incomplete ℵ-functions are presented in this paper. For ϛ, ϛ', ϰ, ϰ', ϖ ∈ ℂ and x > 0 with ℜ (ϖ) > 0, the MSM FIO [19] with the left-and right-hand sides are explained as:
(5)
\left( {\mathcal{I}_{0 + }^{\varsigma ,{\kern 1pt} {\varsigma ^\prime },\varkappa ,{\kern 1pt} {\varkappa ^\prime },\varpi }f} \right)(x) = \frac{{{x^{ - \varsigma }}}}{{\Gamma (\varpi )}}\int_0^x {(x - y)^{\varpi - 1}}{y^{ - {\varsigma ^\prime }}} \times {F_3}\left( {\varsigma ,{\kern 1pt} {\varsigma ^\prime },{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime };{\kern 1pt} \varpi ;{\kern 1pt} 1 - \frac{y}{x},{\kern 1pt} 1 - \frac{x}{y}} \right)f(y)dy,
and
(6)
\left( {\mathcal{I}_ - ^{\varsigma ,{\kern 1pt} {\varsigma ^\prime },{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime },{\kern 1pt} \varpi }f} \right)(x) = \frac{{{x^{ - {\varsigma ^\prime }}}}}{{\Gamma (\varpi )}}\int_x^\infty {(y - x)^{\varpi - 1}}{y^{ - \varsigma }} \times {F_3}\left( {\varsigma ,{\kern 1pt} {\varsigma ^\prime },{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime };{\kern 1pt} \varpi ;{\kern 1pt} 1 - \frac{x}{y},{\kern 1pt} 1 - \frac{y}{x}} \right)f(y)dy,
respectively.
According to a description, the left-and right-hand handed MSM fractional differential operators are (see [20]):
(7)
\left( {\mathcal{D}_{0 + }^{\varsigma ,{\kern 1pt} {\varsigma ^\prime },{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime },{\kern 1pt} \varpi }f} \right)(x) = {\left( {\frac{d}{{dx}}} \right)^\alpha }\left( {\mathcal{I}_{0 + }^{ - {\varsigma ^\prime },{\kern 1pt} - \varsigma ,{\kern 1pt} - {\varkappa ^\prime } + \alpha ,{\kern 1pt} - \varkappa ,{\kern 1pt} - \varpi + \alpha }f} \right)(x),
and
(8)
\left( {\mathcal{D}_ - ^{\varsigma ,{\kern 1pt} {\varsigma ^\prime },{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime },{\kern 1pt} \varpi }f} \right)(x) = {\left( { - \frac{d}{{dx}}} \right)^{[\alpha ]}}\left( {\mathcal{I}_ - ^{ - {\varsigma ^\prime },{\kern 1pt} - \varsigma ,{\kern 1pt} - {\varkappa ^\prime },{\kern 1pt} - \varkappa + \alpha ,{\kern 1pt} - \varpi + \alpha }f} \right)(x),
where, α = [ℜ (ϖ)] + 1 and [[ℜ(ϖ)] represent the integer component in [ℜ(ϖ). For max {|x|, |y|} < 1, the third Appell function F3 has the following definition:
(9)
{F_3}(\varsigma ,{\kern 1pt} {\varsigma ^\prime },{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime };{\kern 1pt} \varpi ;{\kern 1pt} x;{\kern 1pt} y) = \sum\limits_{i,{\kern 1pt} j = 0}^\infty \frac{{{{(\varsigma )}_i}{{({\varsigma ^\prime })}_j}{{(\varkappa )}_i}{{({\varkappa ^\prime })}_j}}}{{{{(\varpi )}_{i + j}}}}\frac{{{x^i}{\kern 1pt} {y^j}}}{{i!{\kern 1pt} j!}},
here, (ϛ)n is the Pochhammer symbol. Current articles [21, 22] include a comprehensive demonstration associated with the MSM operators along with the uses and characteristics. Saigo [10] instigate the fractional operators related with the Gauss hypergeometric function 2F1( ). The left-and right-handed Saigo FIO are given the following descriptions for ϛ, ϰ, ϖ ∈ ℂ, x > 0 and ℜ(ϛ) > 0.
(10)
\left( {\mathcal{I}_{0 + }^{\varsigma ,{\kern 1pt} \varkappa ,{\kern 1pt} \varpi }f} \right)(x) = \frac{{{x^{ - \varsigma - \varkappa }}}}{{\Gamma (\varsigma )}}\int_0^x {(x - y)^{\varsigma - 1}}{{\kern 1pt} _2}{F_1}\left( {\varsigma + \varkappa ,{\kern 1pt} - \varpi ;{\kern 1pt} \varsigma ;{\kern 1pt} 1 - \frac{y}{x}} \right)f(y)dy,
and
(11)
\left( {\mathcal{I}_ - ^{\varsigma ,{\kern 1pt} \varkappa ,{\kern 1pt} \varpi }f} \right)(x) = \frac{1}{{\Gamma (\varsigma )}}\int_x^\infty {(y - x)^{\varsigma - 1}}{y^{ - \varsigma - \varkappa }}{{\kern 1pt} _2}{F_1}\left( {\varsigma + \varkappa ,{\kern 1pt} - \varpi ;{\kern 1pt} \varsigma ;{\kern 1pt} 1 - \frac{x}{y}} \right)f(y)dy,
respectively.
The following definitions are given for the left-and right-sided Saigo differential operators:
(12)
\left( {\mathcal{D}_{0 + }^{\varsigma ,{\kern 1pt} \varkappa ,{\kern 1pt} \varpi }f} \right)(x) = {\left( {\frac{d}{{dx}}} \right)^{[\Re (\varsigma )] + 1}}\left( {\mathcal{I}_{0 + }^{ - \varsigma + [\Re (\varsigma )] + 1,{\kern 1pt} - \varkappa - [\Re (\varsigma )] - 1,{\kern 1pt} \varsigma + \varpi - [\Re (\varsigma )] - 1}f} \right)(x),
and
(13)
\left( {\mathcal{D}_ - ^{\varsigma ,{\kern 1pt} \varkappa ,{\kern 1pt} \varpi }f} \right)(x) = {\left( { - \frac{d}{{dx}}} \right)^{[\Re (\varsigma )] + 1}}\left( {\mathcal{I}_ - ^{ - \varsigma + [\Re (\varsigma )] + 1,{\kern 1pt} - \varkappa - [\Re (\varsigma )] - 1,{\kern 1pt} \varsigma + \varpi }f} \right)(x).
For ϰ = −ϛand ϰ = 0 in (10)–(13), the Riemann-Liouville (R-L) and Erdélyi-Kober (E-K) fractional operators are attained respectively (for further explanation see [23]). 2F1 is associated with F3 as
{F_3}(\varsigma ,{\kern 1pt} \gamma - \varsigma ,{\kern 1pt} \varkappa ,{\kern 1pt} \gamma - \varkappa ;{\kern 1pt} \gamma ;{\kern 1pt} x;{\kern 1pt} y) = {{\kern 1pt} _2}{F_1}(\varsigma ,{\kern 1pt} \varkappa ;{\kern 1pt} \gamma ;{\kern 1pt} x + y - xy).
The MSM fractional operators (5)–(8) are associated to Saigo operators (10)–(13) by
(14)
\left( {\mathcal{I}_{0 + }^{\varsigma ,{\kern 1pt} 0,{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime },\varpi }f} \right)(x) = \left( {\mathcal{I}_{0 + }^{\varpi ,{\kern 1pt} \varsigma - \varpi ,{\kern 1pt} - \varkappa }f} \right)(x),
(15)
\left( {\mathcal{I}_ - ^{\varsigma ,{\kern 1pt} 0,{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime },\varpi }f} \right)(x) = \left( {\mathcal{I}_ - ^{\varpi ,{\kern 1pt} \varsigma - \varpi ,{\kern 1pt} - \varkappa }f} \right)(x),
and
(16)
\left( {\mathcal{D}_{0 + }^{0,{\kern 1pt} {\varsigma ^\prime },{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime },{\kern 1pt} \varpi }f} \right)(x) = \left( {\mathcal{D}_{0 + }^{\varpi ,{\kern 1pt} {\varsigma ^\prime } - \varpi ,{\kern 1pt} {\varkappa ^\prime } - \varpi }f} \right)(x),
(17)
\left( {\mathcal{D}_ - ^{0,{\kern 1pt} {\varsigma ^\prime },{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime },{\kern 1pt} \varpi }f} \right)(x) = \left( {\mathcal{D}_ - ^{\varpi ,{\kern 1pt} {\varsigma ^\prime } - \varpi ,{\kern 1pt} {\varkappa ^\prime } - \varpi }f} \right)(x).
Lemma 1
Let ϛ, ϛ', ϰ, ϰ', ϖ ,λ ∈ ℂ and ℜ(ϖ) > 0.
(a) If ℜ(λ) > max {0, ℜ(ϛ' − ϰ'), ℜ(ϛ+ϛ' + ϰ −ϖ)}, then
(18)
\left( {\mathcal{I}_{0 + }^{\varsigma ,{\kern 1pt} {\varsigma ^\prime },{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime },\varpi }{\kern 1pt} {t^{\lambda - 1}}} \right)(x) = {x^{ - \varsigma - {\varsigma ^\prime } + \varpi + \lambda - 1}}\frac{{\Gamma (\lambda )\Gamma ( - {\varsigma ^\prime } + {\varkappa ^\prime } + \lambda )\Gamma ( - \varsigma - {\varsigma ^\prime } - \varkappa + \varpi + \lambda )}}{{\Gamma ({\varkappa ^\prime } + \lambda )\Gamma ( - \varsigma - {\varsigma ^\prime } + \varpi + \lambda )\Gamma ( - {\varsigma ^\prime } - \varkappa + \varpi + \lambda )}}.
(b) If ℜ(λ) > max {ℜ(ϰ), ℜ(−ϛ−ϛ' +ϖ), ℜ(−ϛ− ϰ' +ϖ)}, then
(19)
\left( {\mathcal{I}_ - ^{\varsigma ,{\kern 1pt} {\varsigma ^\prime },{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime },\varpi }{\kern 1pt} {t^{ - \lambda }}} \right)(x) = {x^{ - \varsigma - {\varsigma ^\prime } + \varpi - \lambda }}{\kern 1pt} \frac{{\Gamma ( - \varkappa + \lambda )\Gamma (\varsigma + {\varsigma ^\prime } - \varpi + \lambda )\Gamma (\varsigma + {\varkappa ^\prime } - \varpi + \lambda )}}{{\Gamma (\lambda )\Gamma (\varsigma - \varkappa + \lambda )\Gamma (\varsigma + {\varsigma ^\prime } + {\varkappa ^\prime } - \varpi + \lambda )}}.
Lemma 2
Let ϛ, ϛ', ϰ, ϰ', ϖ , λ ∈ ℂ.
(a) If ℜ(λ) > max {0, ℜ(−ϛ+ ϰ), ℜ(−ϛ−ϛ' − ϰ' +ϖ)}, then
(20)
\left( {\mathcal{D}_{0 + }^{\varsigma ,{\kern 1pt} {\varsigma ^\prime },{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime },\varpi }{\kern 1pt} {t^{\lambda - 1}}} \right)(x) = {x^{\varsigma + {\varsigma ^\prime } - \varpi + \lambda - 1}}\frac{{\Gamma (\lambda )\Gamma (\varsigma - \varkappa + \lambda )\Gamma (\varsigma + {\varsigma ^\prime } + {\varkappa ^\prime } - \varpi + \lambda )}}{{\Gamma ( - \varkappa + \lambda )\Gamma (\varsigma + {\varsigma ^\prime } - \varpi + \lambda )\Gamma (\varsigma + {\varkappa ^\prime } - \varpi + \lambda )}}.
(b) If ℜ(λ) > max {ℜ(−ϰ'), ℜ(ϛ' + ϰ −ϖ), ℜ(ϛ+ϛ' −ϖ ) + [ℜ(ϖ)] + 1}, then
(21)
\left( {\mathcal{D}_ - ^{\varsigma ,{\kern 1pt} {\varsigma ^\prime },{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime },\varpi }{\kern 1pt} {t^{ - \lambda }}} \right)(x) = {x^{\varsigma + {\varsigma ^\prime } - \varpi - \lambda }}\frac{{\Gamma ({\varkappa ^\prime } + \lambda )\Gamma ( - \varsigma - {\varsigma ^\prime } + \varpi + \lambda )\Gamma ( - {\varsigma ^\prime } - \varkappa + \varpi + \lambda )}}{{\Gamma (\lambda )\Gamma ( - {\varsigma ^\prime } + {\varkappa ^\prime } + \lambda )\Gamma ( - \varsigma - {\varsigma ^\prime } - \varkappa + \varpi + \lambda )}}.
2.1Incomplete ℵ-function
In this paper, we introduced the incomplete ℵ-function
^\Gamma \aleph _{{r_j},{s_j},{\rho _j};m}^{U,V}(\mathcal{Z})
and
^\gamma \aleph _{{r_j},{s_j},{\rho _j};m}^{U,V}(\mathcal{Z})
[24, 25] as follows:
(22)
\begin{array}{*{20}{l}}{{{\kern 1pt} ^\gamma }\aleph _{{r_j},{\kern 1pt} {s_j},{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U,V}{\kern 1pt} (\mathcal{Z}){ = ^\gamma }\aleph _{{r_j},{\kern 1pt} {s_j},{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U,V}{\kern 1pt} \left[ {\mathcal{Z}\Biggl|\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\end{array}} \right]}\\{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\kern 1pt} = \frac{1}{{2\pi \iota }}\int_\$ \;\Phi (q,\mathcal{Y})\;{\mathcal{Z}^{ - q}}\;dq,}\end{array}
where
(23)
\Phi (q,\mathcal{Y}) = \frac{{\gamma (1 - {\Lambda _1} - {\mathfrak{D}_1}q;\mathcal{Y}){\kern 1pt} \prod\limits_{n = 1}^U \Gamma ({\varepsilon _n} + {\mathfrak{E}_n}q){\kern 1pt} \prod\limits_{n = 2}^V \Gamma (1 - {\Lambda _n} - {\mathfrak{D}_n}q)}}{{\sum\limits_{j = 1}^m {\rho _j}{\kern 1pt} [\prod\limits_{n = U + 1}^{{s_j}} \Gamma (1 - {\varepsilon _{nj}} - {\mathfrak{E}_{nj}}q){\kern 1pt} \prod\limits_{n = V + 1}^{{r_j}} \Gamma ({\Lambda _{nj}} + {\mathfrak{D}_{nj}})]}},
and
(24)
\begin{array}{*{20}{l}}{{{\kern 1pt} ^\Gamma }\aleph _{{r_j},{\kern 1pt} {s_j},{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U,V}{\kern 1pt} (\mathcal{Z}){ = ^\Gamma }\aleph _{{r_j},{\kern 1pt} {s_j},{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U,V}{\kern 1pt} \left[ {\mathcal{Z}\Biggl|\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\end{array}} \right]}\\{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\kern 1pt} = \frac{1}{{2\pi \iota }}\int_\$ \;\Psi (q,\mathcal{Y})\;{\mathcal{Z}^{ - q}}\;dq,}\end{array}
where
(25)
\Psi (q,\mathcal{Y}) = \frac{{\Gamma (1 - {\Lambda _1} - {\mathfrak{D}_1}q;\mathcal{Y}){\kern 1pt} \prod\limits_{n = 1}^U \Gamma ({\varepsilon _n} + {\mathfrak{E}_n}q){\kern 1pt} \prod\limits_{n = 2}^V \Gamma (1 - {\Lambda _n} - {\mathfrak{D}_n}q)}}{{\sum\limits_{j = 1}^m {\rho _j}{\kern 1pt} [\prod\limits_{n = U + 1}^{{s_j}} \Gamma (1 - {\varepsilon _{nj}} - {\mathfrak{E}_{nj}}q){\kern 1pt} \prod\limits_{n = V + 1}^{{r_j}} \Gamma ({\Lambda _{nj}} + {\mathfrak{D}_{nj}})]}},
for 𝒵 ≠ 0,𝒴 ≧ 0, the incomplete ℵ-functions
^\gamma \aleph _{{r_j},{s_j},{\rho _j};m}^{U,V}(\mathcal{Z})
and
^\Gamma \aleph _{{r_j},{s_j},{\rho _j};m}^{U,V}(\mathcal{Z})
in (22) and (24) exist in the circumstances listed as follows:
The complex- plane contour $ extended from γ − i∞ to γ + i∞, γ ∈ ℝ, and the poles of the gamma functions Γ (1 − Λn − 𝔇nq) for n = 1, 2, ...,V are not perfectly matched with the gamma function poles Γ (ϵn + 𝔈nq) for n = 1,2,..,U. The parameters rj and sj ∈ ℤ+ satisfying 0 ≤ V ≤ rj,0 ≤ U ≤ sj for 1 ≤ j ≤ m. The parameters 𝔇n, 𝔈n, 𝔈nj, 𝔇nj are positive numbers, and Λn, εn, Λnj, εnj are complex. The void product is considered to represent unity and all of the poles Φ (q,𝒴) and Ψ (q,𝒴) should be simple.
A number of unique remarks are made about incomplete ℵ-functions and are as follows:
Remark 1
When 𝒴 = 0, Equation (24) changes to the suggested ℵ-function of Sudland [26, 27]:
(26)
\begin{array}{*{20}{l}}{{{\kern 1pt} ^\Gamma }\aleph _{{r_j},{\kern 1pt} {s_j},{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U,V}{\kern 1pt} \left[ {\mathcal{Z}\Biggl|\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:0),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\end{array}} \right]}\\{\;\;\;\;\;\;\;\;\;\;\;\; = \aleph _{{r_j},{\kern 1pt} {s_j},{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U,V}{\kern 1pt} \left[ {\mathcal{Z}\Biggl|\begin{array}{*{20}{c}}{{{({\Lambda _n},{\mathfrak{D}_n})}_{1,V}},{\kern 1pt} {{[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\end{array}} \right].}\end{array}
Remark 2
Again, when ρj = 1 in (22) and (24), then it changes to the incomplete I-function of Bansal and Kumar [28]:
(27)
\begin{array}{l}{{\kern 1pt} ^\gamma }\aleph _{{r_j},{\kern 1pt} {s_j},{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U,V}{\kern 1pt} \left[ {\mathcal{Z}\Biggl|\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[1({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} {{[1({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\\\end{array}} \right]\\\;\;\;\;\;\;\;\;\;\;\;\; = {{\kern 1pt} ^\gamma }I_{{r_j},{\kern 1pt} {s_j};{\kern 1pt} m}^{U,V}{\kern 1pt} \left[ {\mathcal{Z}\Biggl|\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{({\Lambda _{nj}},{\mathfrak{D}_{nj}})}_{V + 1,{r_j}}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} {{({\varepsilon _{nj}},{\mathfrak{E}_{nj}})}_{U + 1,{s_j}}}}\\\end{array}} \right],\end{array}
and
(28)
\begin{array}{l}{{\kern 1pt} ^\Gamma }\aleph _{{r_j},{\kern 1pt} {s_j},{\rho _j};{\kern 1pt} m}^{U,V}{\kern 1pt} \left[ {\mathcal{Z}\Biggl|\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[1({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} {{[1({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\\ \end{array}} \right]\\\;\;\;\;\;\;\;\;\;\;\;\; = {{\kern 1pt} ^\Gamma }I_{{r_j},{\kern 1pt} {s_j};{\kern 1pt} m}^{U,V}{\kern 1pt} \left[ {\mathcal{Z}\Biggl|\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{({\Lambda _{nj}},{\mathfrak{D}_{nj}})}_{V + 1,{r_j}}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} {{({\varepsilon _{nj}},{\mathfrak{E}_{nj}})}_{U + 1,{s_j}}}}\\ \end{array}} \right].\end{array}
Remark 3
Next, taking 𝒴 = 0 and ρj = 1 in (24), then it turns into the Saxena I-function [29]:
(29)
\begin{array}{l}{{\kern 1pt} ^\Gamma }\aleph _{{r_j},{\kern 1pt} {s_j},{\kern 1pt} 1;{\kern 1pt} m}^{U,V}{\kern 1pt} \left[ {\mathcal{Z}\Biggl|\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:0),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[1({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} {{[1({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\\ \end{array}} \right]\\\;\;\;\;\;\;\;\;\;\;\;\; = {\kern 1pt} I_{{r_j},{\kern 1pt} {s_j};{\kern 1pt} m}^{U,V}{\kern 1pt} \left[ {\mathcal{Z}\Biggl|\begin{array}{*{20}{c}}{{{({\Lambda _n},{\mathfrak{D}_n})}_{1,V}},{\kern 1pt} {{({\Lambda _{nj}},{\mathfrak{D}_{nj}})}_{V + 1,{r_j}}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} {{({\varepsilon _{nj}},{\mathfrak{E}_{nj}})}_{U + 1,{s_j}}}}\\ \end{array}} \right].\end{array}
Remark 4
Further taking ρj = 1 and m = 1 in (22) and (24), then it turns into the incomplete H-function(see [30, 31] also) of Srivastava [32]:
(30)
\begin{array}{l}{{\kern 1pt} ^\gamma }\aleph _{{r_j},{\kern 1pt} {s_j},{\kern 1pt} 1;{\kern 1pt} 1}^{U,V}{\kern 1pt} \left[ {\mathcal{Z}\Biggl|\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[1({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} {{[1({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\\ \end{array}} \right]\\\;\;\;\;\;\;\;\;\;\;\;\; = {\kern 1pt} \gamma _{r,{\kern 1pt} s}^{U,V}{\kern 1pt} \left[ {\mathcal{Z}\Biggl|\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,r}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,s}}}\\ \end{array}} \right],\end{array}
and
(31)
\begin{array}{l}{{\kern 1pt} ^\Gamma }\aleph _{{r_j},{\kern 1pt} {s_j},{\kern 1pt} 1;{\kern 1pt} 1}^{U,V}{\kern 1pt} \left[ {\mathcal{Z}\Biggl|\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[1({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} {{[1({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\\ \end{array}} \right]\\\;\;\;\;\;\;\;\;\;\;\;\; = {\kern 1pt} \Gamma _{r,{\kern 1pt} s}^{U,V}{\kern 1pt} \left[ {\mathcal{Z}\Biggl|\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,r}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,s}}}\\ \end{array}} \right].\end{array}
Remark 5
Next, we take 𝒴 = 0, ρj = 1, and m = 1 in (24), then it turns into the H-function of Srivastava [33]:
(32)
\begin{array}{l}{{\kern 1pt} ^\Gamma }\aleph _{{r_j},{\kern 1pt} {s_j},{\kern 1pt} 1;{\kern 1pt} 1}^{U,V}{\kern 1pt} \left[ {\mathcal{Z}\Biggl|\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:0),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[1({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} {{[1({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\\ \end{array}} \right]\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = {\kern 1pt} H_{r,{\kern 1pt} s}^{U,V}{\kern 1pt} \left[ {\mathcal{Z}\Biggl|\begin{array}{*{20}{c}}{{{({\Lambda _n},{\mathfrak{D}_n})}_{1,r}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,s}}}\\ \end{array}} \right].\end{array}
We developed the FC findings linked to the incomplete ℵ-functions, which were influenced by the work of Srivastava et al. [34].
3Fractional integral formulas
In this part, we create two formulas for fractional integrals that multiply incomplete ℵ-functions and the generic class of polynomials specified in equation (24) and (4), respectively.
Theorem 3
Let ϛ, ϛ', ϰ, ϰ', ϖ ,z,α ∈ ℂ and ℜ(ϖ) > 0,μ > 0,λk > 0 (k = 1,2,3,··· ,s),
\Re (\alpha ) + \mu \mathop {\min }\limits_{1 \le j \le U} \Re \left( {\frac{{{\varepsilon _j}}}{{{\varkappa _j}}}} \right) > \max [0,\Re (\varsigma + {\varsigma ^\prime } + \varkappa - \varpi ),{\kern 1pt} \Re ({\varsigma ^\prime } - {\varkappa ^\prime })].
Further the parameters rj, sj, 𝔓 ∈ ℤ+ satisfying 0 ≤ V ≤ rj,0 ≤ U ≤ sj for j = 1,2,···m, 𝔇n, 𝔈n, 𝔈nj, 𝔇nj ∈ ℝ+, Λn,εn,Λnj,εnj ∈ ℂ (j = 1,2,··· , rj; n = 1,2,··· , sj),
A_{{\mathfrak{Q}_k},{\kern 1pt} {\mathfrak{P}_k}}^k
are real or complex numbers arbitrary constant for k = 1,2,··· ,s and ρi > 0 for i = 1,2,··· ,m, then the outcome shown below is accurate:
(33)
\begin{array}{l}\mathcal{I}_{0 + }^{\varsigma ,{\kern 1pt} {\varsigma ^\prime },{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime },\varpi }{\kern 1pt} \left( {{t^{\alpha - 1}}\prod\limits_{j = 1}^s S_{{\mathfrak{Q}_j}}^{{\mathfrak{P}_j}}[{c_j}{\kern 1pt} {t^{{\lambda _j}}}]} \right.\\\left. {{ \times ^\Gamma }\aleph _{{r_j},{\kern 1pt} {s_j},{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U,V}{\kern 1pt} \left[ {z{\kern 1pt} {t^\mu }\Biggl|\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\\ \end{array}} \right]} \right)(x)\\ = {x^{\alpha - \varsigma - {\varsigma ^\prime } + \varpi - 1}}\sum\limits_{{\mathfrak{k}_1} = 0}^{[{\mathfrak{Q}_1}/{\mathfrak{P}_1}]} \cdots \sum\limits_{{\mathfrak{k}_s} = 0}^{[{\mathfrak{Q}_s}/{\mathfrak{P}_s}]} \frac{{{{( - {\mathfrak{Q}_1})}_{{\mathfrak{P}_1}{\kern 1pt} {\mathfrak{k}_1}}} \cdots {{( - {\mathfrak{Q}_s})}_{{\mathfrak{P}_s}{\kern 1pt} {\mathfrak{k}_s}}}}}{{{\mathfrak{k}_1}! \cdots {\mathfrak{k}_s}!}}A_{{\mathfrak{Q}_1},{\kern 1pt} {\mathfrak{P}_1}}^{(1)} \cdots A_{{\mathfrak{Q}_s},{\kern 1pt} {\mathfrak{P}_s}}^{(s)}{\kern 1pt} {\kern 1pt} c_1^{{\mathfrak{k}_1}} \cdots c_s^{{\mathfrak{k}_s}}{\kern 1pt} {(x)^{\sum\limits_{j = 1}^s {\lambda _j}{\kern 1pt} {\mathfrak{k}_j}}}\\{ \times ^\Gamma }\aleph _{{r_j} + 3,{\kern 1pt} {s_j} + 3,{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U,V + 3}{\kern 1pt} \left[ {z{\kern 1pt} {x^\mu }\Biggl|\begin{array}{*{20}{c}}{(1 - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),(1 - \alpha + \varsigma + {\varsigma ^\prime } + \varkappa - \varpi - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} (1 - \alpha + \varsigma + {\varsigma ^\prime } - \varpi - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),}\\ \end{array}} \right.\\\;\;\left. {\;\;\begin{array}{*{20}{c}}{(1 - \alpha + {\varsigma ^\prime } - {\varkappa ^\prime } - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} ({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{(1 - \alpha - {\varkappa ^\prime } - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} (1 + {\varsigma ^\prime } + \varkappa - \varpi - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\end{array}} \right].\end{array}
Proof
The LHS of equation (33) is:
(34)
\begin{array}{l}{T_1} = \mathcal{I}_{0 + }^{\varsigma ,{\kern 1pt} {\varsigma ^\prime },{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime },\varpi }{\kern 1pt} \left( {{t^{\alpha - 1}}\prod\limits_{j = 1}^s S_{{\mathfrak{Q}_j}}^{{\mathfrak{P}_j}}[{c_j}{\kern 1pt} {t^{{\lambda _j}}}]} \right.\\\left. {{ \times ^\Gamma }\aleph _{{r_j},{\kern 1pt} {s_j},{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U,V}{\kern 1pt} \left[ {z{\kern 1pt} {t^\mu }\Biggl|\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\\ \end{array}} \right]} \right).\end{array}
Replace the incomplete ℵ-function and Srivastava polynomial by equation (24) and (4) respectively and by reversing the summation order, we discover the subsequent form:
(35)
\begin{array}{l}{T_1} = \sum\limits_{{\mathfrak{k}_1} = 0}^{[{\mathfrak{Q}_1}/{\mathfrak{P}_1}]} \cdots \sum\limits_{{\mathfrak{k}_s} = 0}^{[{\mathfrak{Q}_s}/{\mathfrak{P}_s}]} \frac{{{{( - {\mathfrak{Q}_1})}_{{\mathfrak{P}_1}{\kern 1pt} {\mathfrak{k}_1}}} \cdots {{( - {\mathfrak{Q}_s})}_{{\mathfrak{P}_s}{\kern 1pt} {\mathfrak{k}_s}}}}}{{{\mathfrak{k}_1}! \cdots {\mathfrak{k}_s}!}}{\kern 1pt} \times A_{{\mathfrak{Q}_1},{\kern 1pt} {\mathfrak{P}_1}}^{(1)} \cdots A_{{\mathfrak{Q}_s},{\kern 1pt} {\mathfrak{P}_s}}^{(s)}{\kern 1pt} {\kern 1pt} c_1^{{\mathfrak{k}_1}} \cdots c_s^{{\mathfrak{k}_s}}\\ \times \frac{1}{{2\pi \iota }}\int_\$ \;\Psi (q,\mathcal{Y})\;{z^{ - q}}\left( {\mathcal{I}_{0 + }^{\varsigma ,{\kern 1pt} {\varsigma ^\prime },{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime },\varpi }{\kern 1pt} {t^{\alpha + \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j} - \mu q - 1}}} \right)(x)dq,\end{array}
where Ψ (q,𝒴) is defined in equation (25).
Using equation (18) of Lemma 1, we discover the subsequent form:
(36)
\begin{array}{l}{T_1} = \sum\limits_{{\mathfrak{k}_1} = 0}^{[{\mathfrak{Q}_1}/{\mathfrak{P}_1}]} \cdots \sum\limits_{{\mathfrak{k}_s} = 0}^{[{\mathfrak{Q}_s}/{\mathfrak{P}_s}]} \frac{{{{( - {\mathfrak{Q}_1})}_{{\mathfrak{P}_1}{\kern 1pt} {\mathfrak{k}_1}}} \cdots {{( - {\mathfrak{Q}_s})}_{{\mathfrak{P}_s}{\kern 1pt} {\mathfrak{k}_s}}}}}{{{\mathfrak{k}_1}! \cdots {\mathfrak{k}_s}!}}{\kern 1pt} \times A_{{\mathfrak{Q}_1},{\kern 1pt} {\mathfrak{P}_1}}^{(1)} \cdots A_{{\mathfrak{Q}_s},{\kern 1pt} {\mathfrak{P}_s}}^{(s)}{\kern 1pt} {\kern 1pt} c_1^{{\mathfrak{k}_1}} \cdots c_s^{{\mathfrak{k}_s}}\\ \times \frac{1}{{2\pi \iota }}\int_\$ \;{x^{\alpha - \varsigma - {\varsigma ^\prime } + \varpi + \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j} - 1}}{\kern 1pt} {\kern 1pt} \Psi (q,\mathcal{Y})\;{(z{x^\mu })^{ - q}}\frac{{\Gamma (\alpha + \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j} - \mu q)}}{{\Gamma ({\varkappa ^\prime } + \alpha + \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j} - \mu q)}} \times \\\frac{{\Gamma ( - {\varsigma ^\prime } + {\varkappa ^\prime } + \alpha + \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j} - \mu q){\kern 1pt} {\kern 1pt} \Gamma ( - \varsigma - {\varsigma ^\prime } - \varkappa + \varpi + \alpha + \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j} - \mu q)}}{{\Gamma ( - \varsigma - {\varsigma ^\prime } + \varpi + \alpha + \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j} - \mu q){\kern 1pt} {\kern 1pt} \Gamma ( - {\varsigma ^\prime } - \varkappa + \varpi + \alpha + \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j} - \mu q)}}dq.\end{array}
Finally, after some adjustment of terms , we obtain RHS of equation (33).
Theorem 4
Let ϛ, ϛ', ϰ, ϰ', ϖ,z, α ∈ ℂ and ℜ(ϖ) > 0,μ > 0,λk > 0 (k = 1,2,3,···, s),
\Re (\alpha ) + \mu \mathop {\min }\limits_{1 \le j \le U} \Re \left( {\frac{{{\varepsilon _j}}}{{{\varkappa _j}}}} \right) > \max [0,\Re (\varsigma + {\varsigma ^\prime } + \varkappa - \varpi ),{\kern 1pt} \Re ({\varsigma ^\prime } - {\varkappa ^\prime })].
Further the parameters rj, sj, 𝔓 ∈ ℤ+ satisfying 0 ≤ V ≤ rj,0 ≤ U ≤ sj for j = 1,2,···m, 𝔇n, 𝔈n, 𝔈nj, 𝔇nj ∈ ℝ+, Λn, εn,Λnj,εnj ∈ ℂ (j = 1,2,··· , rj; n = 1,2,··· , sj),
A_{{\mathfrak{Q}_k},{\kern 1pt} {\mathfrak{P}_k}}^k
are real or complex numbers arbitrary constant for k = 1,2,··· ,s and ρi > 0 for i = 1,2,··· ,m, then the outcome shown below is accurate:
(37)
\begin{array}{l}\mathcal{I}_{0 + }^{\varsigma ,{\kern 1pt} {\varsigma ^\prime },{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime },\varpi }{\kern 1pt} \left( {{t^{\alpha - 1}}\prod\limits_{j = 1}^s S_{{\mathfrak{Q}_j}}^{{\mathfrak{P}_j}}[{c_j}{\kern 1pt} {t^{{\lambda _j}}}]} \right.\\\left. {^\gamma \aleph _{{r_j},{\kern 1pt} {s_j},{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U,V}{\kern 1pt} \left[ {z{\kern 1pt} {t^\mu }\Biggl|\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\\ \end{array}} \right]} \right)(x)\\ = {x^{\alpha - \varsigma - {\varsigma ^\prime } + \varpi - 1}}\sum\limits_{{\mathfrak{k}_1} = 0}^{[{\mathfrak{Q}_1}/{\mathfrak{P}_1}]} \cdots \sum\limits_{{\mathfrak{k}_s} = 0}^{[{\mathfrak{Q}_s}/{\mathfrak{P}_s}]} \frac{{{{( - {\mathfrak{Q}_1})}_{{\mathfrak{P}_1}{\kern 1pt} {\mathfrak{k}_1}}} \cdots {{( - {\mathfrak{Q}_s})}_{{\mathfrak{P}_s}{\kern 1pt} {\mathfrak{k}_s}}}}}{{{\mathfrak{k}_1}! \cdots {\mathfrak{k}_s}!}}A_{{\mathfrak{Q}_1},{\kern 1pt} {\mathfrak{P}_1}}^{(1)} \cdots A_{{\mathfrak{Q}_s},{\kern 1pt} {\mathfrak{P}_s}}^{(s)}{\kern 1pt} {\kern 1pt} c_1^{{\mathfrak{k}_1}} \cdots c_s^{{\mathfrak{k}_s}}{\kern 1pt} {(x)^{\sum\limits_{j = 1}^s {\lambda _j}{\kern 1pt} {\mathfrak{k}_j}}}\\{ \times ^\gamma }\aleph _{{r_j} + 3,{\kern 1pt} {s_j} + 3,{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U,V + 3}{\kern 1pt} \left[ {z{\kern 1pt} {x^\mu }\Biggl|\begin{array}{*{20}{c}}{(1 - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),(1 - \alpha + \varsigma + {\varsigma ^\prime } + \varkappa - \varpi - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} (1 - \alpha + \varsigma + {\varsigma ^\prime } - \varpi - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),}\\ \end{array}} \right.\\\;\left. {\;\;\;\begin{array}{*{20}{c}}{(1 - \alpha + {\varsigma ^\prime } - {\varkappa ^\prime } - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} ({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{(1 - \alpha - {\varkappa ^\prime } - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} (1 + {\varsigma ^\prime } + \varkappa - \varpi - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\end{array}} \right].\end{array}
Proof
Theorem 4 is proved in the same manner as Theorem 3 with the same conditions.
The following corollary is obtained regarding the Saigo FIO [10] in light of the equation (14).
Corollary 5
Let ϛ, ϰ, ϖ ,z,α ∈ ℂ and ℜ(ϛ) > 0,μ > 0,λk > 0 (k = 1,2,··· ,s),
\Re (\alpha ) + \mu \mathop {\min }\limits_{1 \le j \le U} \Re \left( {\frac{{{\varepsilon _j}}}{{{\varkappa _j}}}} \right) > \max [0,\Re (\varkappa - \varpi )].
Further the parameters rj, sj, 𝔓 ∈ ℤ+ satisfying 0 ≤ V ≤ rj, 0 U ≤ sj for j = 1,2,···m, 𝔇n, 𝔈n, 𝔈nj, 𝔇nj ∈ ℝ+, Λn,εn,Λnj,εnj ∈ ℂ (j = 1,2, ··· , rj;n = 1,2,··· , sj),
A_{{\mathfrak{Q}_k},{\kern 1pt} {\mathfrak{P}_k}}^k
are real or complex numbers arbitrary constant for k = 1,2,3,··· ,s and ρi > 0 for i = 1,2,··· ,m, then the outcome shown below is accurate:
(38)
\begin{array}{l}\mathcal{I}_{0 + }^{\varsigma ,{\kern 1pt} \varkappa ,{\kern 1pt} \varpi }{\kern 1pt} \left( {{t^{\alpha - 1}}\prod\limits_{j = 1}^s S_{{\mathfrak{Q}_j}}^{{\mathfrak{P}_j}}[{c_j}{\kern 1pt} {t^{{\lambda _j}}}]} \right.\\\left. {^\Gamma \aleph _{{r_j},{\kern 1pt} {s_j},{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U,V}{\kern 1pt} \left[ {z{\kern 1pt} {t^\mu }\Biggl|\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\\ \end{array}} \right]} \right)(x)\\ = {x^{\alpha - \varkappa - 1}}\sum\limits_{{\mathfrak{k}_1} = 0}^{[{\mathfrak{Q}_1}/{\mathfrak{P}_1}]} \cdots \sum\limits_{{\mathfrak{k}_s} = 0}^{[{\mathfrak{Q}_s}/{\mathfrak{P}_s}]} \frac{{{{( - {\mathfrak{Q}_1})}_{{\mathfrak{P}_1}{\kern 1pt} {\mathfrak{k}_1}}} \cdots {{( - {\mathfrak{Q}_s})}_{{\mathfrak{P}_s}{\kern 1pt} {\mathfrak{k}_s}}}}}{{{\mathfrak{k}_1}! \cdots {\mathfrak{k}_s}!}}A_{{\mathfrak{Q}_1},{\kern 1pt} {\mathfrak{P}_1}}^{(1)} \cdots A_{{\mathfrak{Q}_s},{\kern 1pt} {\mathfrak{P}_s}}^{(s)}{\kern 1pt} {\kern 1pt} c_1^{{\mathfrak{k}_1}} \cdots c_s^{{\mathfrak{k}_s}}{\kern 1pt} {(x)^{\sum\limits_{j = 1}^s {\lambda _j}{\kern 1pt} {\mathfrak{k}_j}}}\\{ \times ^\Gamma }\aleph _{{r_j} + 2,{\kern 1pt} {s_j} + 3,{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U,V + 2}{\kern 1pt} \left[ {z{\kern 1pt} {x^\mu }\Biggl|\begin{array}{*{20}{c}}{(1 - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),(1 - \alpha + \varkappa - \varpi - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} (1 - \alpha - \varsigma - \varpi - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),}\\ \end{array}} \right.\\\left. {\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{(1 - \alpha + \varkappa - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\end{array}} \right].\end{array}
The same result can be obtained concerning Saigo FIO for the lower incomplete ℵ-function.
Remark 6
By substituting ϰ = −ϛ and ϰ = 0 in Corollary 5, respectively, we can also get findings for the fractional derivative operators of R-L and E-K.
Theorem 6
Let ϛ, ϛ', ϰ, ϰ', ϖ ,z,α ∈ ℂ and ℜ(ϖ) > 0,μ > 0,λk > 0 (k = 1,2,3,··· ,s),
\Re (\alpha ) - \mu \mathop {\min }\limits_{1 \le j \le U} \Re \left( {\frac{{{\varepsilon _j}}}{{{\varkappa _j}}}} \right) < 1 + \min [\Re ( - \varkappa ),\Re (\varsigma + {\varsigma ^\prime } - \varpi ),\Re (\varsigma + {\varkappa ^\prime } - \varpi )].
Further the parameters rj, sj, 𝔓 ∈ ℤ+ satisfying 0 ≤ V ≤ rj,0 ≤ U ≤ sj for j = 1,2,···m, 𝔇n, 𝔈n, 𝔈nj, 𝔇nj ∈ ℝ+, Λn,εn,Λnj,εnj ∈ ℂ (j = 1,2,··· , rj;n = 1,2,··· , sj),
A_{{\mathfrak{Q}_k},{\kern 1pt} {\mathfrak{P}_k}}^k
are real or complex numbers arbitrary constant for k = 1,2,··· ,s and ρi > 0 for i = 1,2,··· ,m, then the outcome shown below is accurate:
(39)
\begin{array}{l}\mathcal{I}_ - ^{\varsigma ,{\kern 1pt} {\varsigma ^\prime },{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime },\varpi }{\kern 1pt} \left( {{t^{\alpha - 1}}\prod\limits_{j = 1}^s S_{{\mathfrak{Q}_j}}^{{\mathfrak{P}_j}}[{c_j}{\kern 1pt} {t^{{\lambda _j}}}]} \right.\\\left. {^\Gamma \aleph _{{r_j},{\kern 1pt} {s_j},{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U,V}{\kern 1pt} \left[ {z{\kern 1pt} {t^\mu }\Biggl|\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\\ \end{array}} \right]} \right)(x)\\ = {x^{\alpha - \varsigma - {\varsigma ^\prime } + \varpi - 1}}\sum\limits_{{\mathfrak{k}_1} = 0}^{[{\mathfrak{Q}_1}/{\mathfrak{P}_1}]} \cdots \sum\limits_{{\mathfrak{k}_s} = 0}^{[{\mathfrak{Q}_s}/{\mathfrak{P}_s}]} \frac{{{{( - {\mathfrak{Q}_1})}_{{\mathfrak{P}_1}{\kern 1pt} {\mathfrak{k}_1}}} \cdots {{( - {\mathfrak{Q}_s})}_{{\mathfrak{P}_s}{\kern 1pt} {\mathfrak{k}_s}}}}}{{{\mathfrak{k}_1}! \cdots {\mathfrak{k}_s}!}}A_{{\mathfrak{Q}_1},{\kern 1pt} {\mathfrak{P}_1}}^{(1)} \cdots A_{{\mathfrak{Q}_s},{\kern 1pt} {\mathfrak{P}_s}}^{(s)}{\kern 1pt} {\kern 1pt} c_1^{{\mathfrak{k}_1}} \cdots c_s^{{\mathfrak{k}_s}}{\kern 1pt} {(x)^{\sum\limits_{j = 1}^s {\lambda _j}{\kern 1pt} {\mathfrak{k}_j}}}\\{ \times ^\Gamma }\aleph _{{r_j} + 3,{\kern 1pt} {s_j} + 3,{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U + 3,V}{\kern 1pt} \left[ {z{\kern 1pt} {x^\mu }\Biggl|\begin{array}{*{20}{c}}{(1 - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),(1 - \alpha + \varsigma + {\varsigma ^\prime } + {\varkappa ^\prime } - \varpi - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} (1 - \alpha + \varsigma + {\varsigma ^\prime } - \varpi - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),}\\ \end{array}} \right.\\\left. {\;\;\;\;\begin{array}{*{20}{c}}{(1 - \alpha + \varsigma - \varkappa - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} ({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{(1 - \alpha - \varkappa - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} (1 + \varsigma + {\varkappa ^\prime } - \varpi - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\end{array}} \right].\end{array}
Proof
The LHS of equation (39) is:
(40)
\begin{array}{l}{T_2} = \mathcal{I}_ - ^{\varsigma ,{\kern 1pt} {\varsigma ^\prime },{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime },\varpi }{\kern 1pt} \left( {{t^{\alpha - 1}}\prod\limits_{j = 1}^s S_{{\mathfrak{Q}_j}}^{{\mathfrak{P}_j}}[{c_j}{\kern 1pt} {t^{{\lambda _j}}}]} \right.\\\left. {^\Gamma \aleph _{{r_j},{\kern 1pt} {s_j},{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U,V}{\kern 1pt} \left[ {z{\kern 1pt} {t^\mu }\Biggl|\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\\ \end{array}} \right]} \right).\end{array}
Replace the incomplete ℵ-function and Srivastava polynomial by equation (24) and (4) respectively and by reversing the summation order, we discover the subsequent form:
(41)
\begin{array}{l}{T_2} = \sum\limits_{{\mathfrak{k}_1} = 0}^{[{\mathfrak{Q}_1}/{\mathfrak{P}_1}]} \cdots \sum\limits_{{\mathfrak{k}_s} = 0}^{[{\mathfrak{Q}_s}/{\mathfrak{P}_s}]} \frac{{{{( - {\mathfrak{Q}_1})}_{{\mathfrak{P}_1}{\kern 1pt} {\mathfrak{k}_1}}} \cdots {{( - {\mathfrak{Q}_s})}_{{\mathfrak{P}_s}{\kern 1pt} {\mathfrak{k}_s}}}}}{{{\mathfrak{k}_1}! \cdots {\mathfrak{k}_s}!}}{\kern 1pt} \times A_{{\mathfrak{Q}_1},{\kern 1pt} {\mathfrak{P}_1}}^{(1)} \cdots A_{{\mathfrak{Q}_s},{\kern 1pt} {\mathfrak{P}_s}}^{(s)}{\kern 1pt} {\kern 1pt} c_1^{{\mathfrak{k}_1}} \cdots c_s^{{\mathfrak{k}_s}}\\ \times \frac{1}{{2\pi \iota }}\int_\$ \;\Psi (q,\mathcal{Y})\;{z^{ - q}}\left( {\mathcal{I}_ - ^{\varsigma ,{\kern 1pt} {\varsigma ^\prime },{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime },\varpi }{\kern 1pt} {t^{ - ( - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j} + \mu q + 1)}}} \right)(x)dq,\end{array}
where Ψ (q,𝒴) is defined in equation (25).
Using equation (19) of Lemma 1, we discover the subsequent form:
(42)
\begin{array}{l}{T_2} = \sum\limits_{{\mathfrak{k}_1} = 0}^{[{\mathfrak{Q}_1}/{\mathfrak{P}_1}]} \cdots \sum\limits_{{\mathfrak{k}_s} = 0}^{[{\mathfrak{Q}_s}/{\mathfrak{P}_s}]} \frac{{{{( - {\mathfrak{Q}_1})}_{{\mathfrak{P}_1}{\kern 1pt} {\mathfrak{k}_1}}} \cdots {{( - {\mathfrak{Q}_s})}_{{\mathfrak{P}_s}{\kern 1pt} {\mathfrak{k}_s}}}}}{{{\mathfrak{k}_1}! \cdots {\mathfrak{k}_s}!}}{\kern 1pt} \times A_{{\mathfrak{Q}_1},{\kern 1pt} {\mathfrak{P}_1}}^{(1)} \cdots A_{{\mathfrak{Q}_s},{\kern 1pt} {\mathfrak{P}_s}}^{(s)}{\kern 1pt} {\kern 1pt} c_1^{{\mathfrak{k}_1}} \cdots c_s^{{\mathfrak{k}_s}}\\ \times \frac{1}{{2\pi \iota }}\int_\$ \;{x^{\alpha - \varsigma - {\varsigma ^\prime } + \varpi + \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j} - 1}}{\kern 1pt} {\kern 1pt} \Psi (q,\mathcal{Y})\;{(z{x^\mu })^{ - q}}\frac{{\Gamma (1 - \alpha - \varkappa - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j} + \mu q)}}{{\Gamma (1 - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j} + \mu q)}} \times \\\frac{{\Gamma (1 + \varsigma + {\varsigma ^\prime } - \varpi - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j} + \mu q){\kern 1pt} \Gamma (1 - \alpha + \varsigma + {\varkappa ^\prime } - \varpi - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j} + \mu q)}}{{\Gamma (1 - \alpha + \varsigma - \varkappa - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j} + \mu q){\kern 1pt} \Gamma (1 - \alpha + \varsigma + {\varsigma ^\prime } + {\varkappa ^\prime } - \varpi - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j} + \mu q)}}dq.\end{array}
Finally, after some adjustment of terms, we obtain RHS of equation (39).
Theorem 7
Let ϛ, ϛ', ϰ, ϰ', ϖ ,z,α ∈ ℂ and ℜ(ϖ) > 0,μ > 0,λk > 0 (k = 1,2,3,··· ,s),
\Re (\alpha ) - \mu \mathop {\min }\limits_{1 \le j \le U} \Re \left( {\frac{{{\varepsilon _j}}}{{{\varkappa _j}}}} \right) < 1 + \min [\Re ( - \varkappa ),\Re (\varsigma + {\varsigma ^\prime } - \varpi ),\Re (\varsigma + {\varkappa ^\prime } - \varpi )].
Further the parameters rj, sj, 𝔓 ∈ ℤ+ satisfying 0 ≤ V ≤ rj,0 ≤ U ≤ sj for j = 1,2,···m, 𝔇n, 𝔈n, 𝔈nj, 𝔇nj ∈ ℝ+, Λn,εn,Λnj,εnj ∈ ℂ (j = 1,2,··· , rj;n = 1,2,··· , sj),
A_{{\mathfrak{Q}_k},{\kern 1pt} {\mathfrak{P}_k}}^k
are real or complex numbers arbitrary constant for k = 1,2,··· ,s and ρi > 0 for i = 1,2,··· ,m, then the outcome shown below is accurate:
(43)
\begin{array}{l}\mathcal{I}_ - ^{\varsigma ,{\kern 1pt} {\varsigma ^\prime },{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime },\varpi }{\kern 1pt} \left( {{t^{\alpha - 1}}\prod\limits_{j = 1}^s S_{{\mathfrak{Q}_j}}^{{\mathfrak{P}_j}}[{c_j}{\kern 1pt} {t^{{\lambda _j}}}]} \right.\\\left. {^\gamma \aleph _{{r_j},{\kern 1pt} {s_j},{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U,V}{\kern 1pt} \left[ {z{\kern 1pt} {t^\mu }\Biggl|\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\\ \end{array}} \right]} \right)(x)\\ = {x^{\alpha - \varsigma - {\varsigma ^\prime } + \varpi - 1}}\sum\limits_{{\mathfrak{k}_1} = 0}^{[{\mathfrak{Q}_1}/{\mathfrak{P}_1}]} \cdots \sum\limits_{{\mathfrak{k}_s} = 0}^{[{\mathfrak{Q}_s}/{\mathfrak{P}_s}]} \frac{{{{( - {\mathfrak{Q}_1})}_{{\mathfrak{P}_1}{\kern 1pt} {\mathfrak{k}_1}}} \cdots {{( - {\mathfrak{Q}_s})}_{{\mathfrak{P}_s}{\kern 1pt} {\mathfrak{k}_s}}}}}{{{\mathfrak{k}_1}! \cdots {\mathfrak{k}_s}!}}A_{{\mathfrak{Q}_1},{\kern 1pt} {\mathfrak{P}_1}}^{(1)} \cdots A_{{\mathfrak{Q}_s},{\kern 1pt} {\mathfrak{P}_s}}^{(s)}{\kern 1pt} {\kern 1pt} c_1^{{\mathfrak{k}_1}} \cdots c_s^{{\mathfrak{k}_s}}{\kern 1pt} {(x)^{\sum\limits_{j = 1}^s {\lambda _j}{\kern 1pt} {\mathfrak{k}_j}}}\\{ \times ^\gamma }\aleph _{{r_j} + 3,{\kern 1pt} {s_j} + 3,{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U + 3,V}{\kern 1pt} \left[ {z{\kern 1pt} {x^\mu }\Biggl|\begin{array}{*{20}{c}}{(1 - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),(1 - \alpha + \varsigma + {\varsigma ^\prime } + {\varkappa ^\prime } - \varpi - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} (1 - \alpha + \varsigma + {\varsigma ^\prime } - \varpi - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),}\\ \end{array}} \right.\\\left. {\;\;\;\;\begin{array}{*{20}{c}}{(1 - \alpha + \varsigma - \varkappa - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} ({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{(1 - \alpha - \varkappa - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} (1 + \varsigma + {\varkappa ^\prime } - \varpi - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\end{array}} \right].\end{array}
Proof
Theorem 7 is proved in the same way as Theorem 6 with the same conditions. The following corollary is obtained regarding the Saigo FIO [10] in light of the equation (15).
Corollary 8
Let ϛ, ϰ, ϖ ,z,α ∈ ℂ and ℜ(ϛ) > 0,μ > 0,λk > 0 (k = 1,2,··· ,s),
\Re (\alpha ) - \mu \mathop {\min }\limits_{1 \le j \le U} \Re \left( {\frac{{{\varepsilon _j}}}{{{\varkappa _j}}}} \right) < 1 + \min [\Re (\varkappa ),\Re (\varpi )].
Further the parameters rj, sj, 𝔓 ∈ ℤ+ satisfying 0 ≤ V ≤ rj,0 ≤ U ≤ sj for j = 1,2,···m, 𝔇n, 𝔈n, 𝔈nj, 𝔇nj ∈ ℝ+, Λn,εn,Λnj,εnj ∈ ℂ (j = 1,2, ··· , rj;n = 1,2,··· , sj),
A_{{\mathfrak{Q}_k},{\kern 1pt} {\mathfrak{P}_k}}^k
are real or complex numbers arbitrary constant for k = 1,2,··· ,s and ρi > 0 for i = 1,2,··· ,m, then the outcome shown below is accurate:
(44)
\begin{array}{l}\mathcal{I}_ - ^{\varsigma ,{\kern 1pt} \varkappa ,{\kern 1pt} \varpi }{\kern 1pt} \left( {{t^{\alpha - 1}}\prod\limits_{j = 1}^s S_{{\mathfrak{Q}_j}}^{{\mathfrak{P}_j}}[{c_j}{\kern 1pt} {t^{{\lambda _j}}}]} \right.\\\left. {^\Gamma \aleph _{{r_j},{\kern 1pt} {s_j},{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U,V}\left[ {z{\kern 1pt} {t^\mu }\Biggl|\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\\ \end{array}} \right]} \right)(x)\\ = {x^{\alpha - \varkappa - 1}}\sum\limits_{{\mathfrak{k}_1} = 0}^{[{\mathfrak{Q}_1}/{\mathfrak{P}_1}]} \cdots \sum\limits_{{\mathfrak{k}_s} = 0}^{[{\mathfrak{Q}_s}/{\mathfrak{P}_s}]} \frac{{{{( - {\mathfrak{Q}_1})}_{{\mathfrak{P}_1}{\kern 1pt} {\mathfrak{k}_1}}} \cdots {{( - {\mathfrak{Q}_s})}_{{\mathfrak{P}_s}{\kern 1pt} {\mathfrak{k}_s}}}}}{{{\mathfrak{k}_1}! \cdots {\mathfrak{k}_s}!}}A_{{\mathfrak{Q}_1},{\kern 1pt} {\mathfrak{P}_1}}^{(1)} \cdots A_{{\mathfrak{Q}_s},{\kern 1pt} {\mathfrak{P}_s}}^{(s)}{\kern 1pt} {\kern 1pt} c_1^{{\mathfrak{k}_1}} \cdots c_s^{{\mathfrak{k}_s}}{\kern 1pt} {(x)^{\sum\limits_{j = 1}^s {\lambda _j}{\kern 1pt} {\mathfrak{k}_j}}}\\{ \times ^\Gamma }\aleph _{{r_j} + 2,{\kern 1pt} {s_j} + 2,{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U + 2,V}{\kern 1pt} \left[ {z{\kern 1pt} {x^\mu }\Biggl|\begin{array}{*{20}{c}}{(1 - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),(1 - \alpha + \varsigma + \varkappa + \varpi - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} (1 + \varkappa - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),}\\ \end{array}} \right.\\\left. {\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{(1 - \alpha + \varpi - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\end{array}} \right].\end{array}
The same result can be obtained concerning Saigo FIO for the lower incomplete ℵ-function.
Remark 7
By substituting ϰ = −ϛand ϰ = 0 in Corollary 8, respectively, we can also get findings for the fractional derivative operators of R-L and E-K.
4Fractional derivative formulas
In this part, we create two formulas for fractional derivative that multiply incomplete ℵ-functions and the generic class of polynomials specified in (24) and (4), respectively.
Theorem 9
Let ϛ, ϛ', ϰ, ϰ', ϖ ,z,α ∈ ℂ and ℜ(ϖ) > 0,μ > 0,λk > 0 (k = 1,2,3,··· ,s),
\mu \mathop {\max }\limits_{1 \le j \le U} \left[ {\frac{{ - \Re ({\varepsilon _j})}}{{{\mathfrak{E}_j}}}} \right] < \Re (\alpha ) + \min [0,\Re (\varsigma - \varkappa ),\Re ({\varsigma ^\prime } + {\varkappa ^\prime } + \varsigma - \varpi )].
Further the parameters rj, sj, 𝔓 ∈ ℤ+ satisfying 0 ≤ V ≤ rj,0 ≤ U ≤ sj for j = 1,2,···m, 𝔇n, 𝔈n, 𝔈nj, 𝔇nj ∈ ℝ+, Λn,εn,Λnj,εnj ∈ ℂ (j = 1,2,··· , rj;n = 1,2,··· , sj),
A_{{\mathfrak{Q}_k},{\kern 1pt} {\mathfrak{P}_k}}^k
are real or complex numbers arbitrary constant for k = 1,2,··· ,s and ρi > 0 for i = 1,2,··· ,m, then the outcome shown below is accurate:
(45)
\begin{array}{l}\mathcal{D}_{0 + }^{\varsigma ,{\kern 1pt} {\varsigma ^\prime },{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime },\varpi }{\kern 1pt} \left( {{t^{\alpha - 1}}\prod\limits_{j = 1}^s S_{{\mathfrak{Q}_j}}^{{\mathfrak{P}_j}}[{c_j}{\kern 1pt} {t^{{\lambda _j}}}]} \right.\\\left. {^\Gamma \aleph _{{r_j},{\kern 1pt} {s_j},{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U,V}\left[ {z{\kern 1pt} {t^\mu }\Biggl|\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\\ \end{array}} \right]} \right)(x)\\ = {x^{\alpha + \varsigma + {\varsigma ^\prime } - \varpi - 1}}\sum\limits_{{\mathfrak{k}_1} = 0}^{[{\mathfrak{Q}_1}/{\mathfrak{P}_1}]} \cdots \sum\limits_{{\mathfrak{k}_s} = 0}^{[{\mathfrak{Q}_s}/{\mathfrak{P}_s}]} \frac{{{{( - {\mathfrak{Q}_1})}_{{\mathfrak{P}_1}{\kern 1pt} {\mathfrak{k}_1}}} \cdots {{( - {\mathfrak{Q}_s})}_{{\mathfrak{P}_s}{\kern 1pt} {\mathfrak{k}_s}}}}}{{{\mathfrak{k}_1}! \cdots {\mathfrak{k}_s}!}}A_{{\mathfrak{Q}_1},{\kern 1pt} {\mathfrak{P}_1}}^{(1)} \cdots A_{{\mathfrak{Q}_s},{\kern 1pt} {\mathfrak{P}_s}}^{(s)}{\kern 1pt} {\kern 1pt} c_1^{{\mathfrak{k}_1}} \cdots c_s^{{\mathfrak{k}_s}}{\kern 1pt} {(x)^{\sum\limits_{j = 1}^s {\lambda _j}{\kern 1pt} {\mathfrak{k}_j}}}\\{ \times ^\Gamma }\aleph _{{r_j} + 3,{\kern 1pt} {s_j} + 3,{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U,V + 3}{\kern 1pt} \left[ {z{\kern 1pt} {x^\mu }\Biggl|\begin{array}{*{20}{c}}{(1 - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),(1 - \alpha - \varsigma - {\varsigma ^\prime } - {\varkappa ^\prime } + \varpi - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} (1 - \varsigma - {\varsigma ^\prime } + \varpi - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),}\\ \end{array}} \right.\\\left. {\;\;\;\;\begin{array}{*{20}{c}}{(1 - \alpha - \varsigma + \varkappa - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} ({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{(1 - \alpha + \varkappa - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} (1 - \varsigma - {\varkappa ^\prime } + \varpi - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\end{array}} \right].\end{array}
Proof
The LHS of equation (45) is:
(46)
\begin{array}{l}{T_3} = \mathcal{D}_{0 + }^{\varsigma ,{\kern 1pt} {\varsigma ^\prime },{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime },\varpi }{\kern 1pt} \left( {{t^{\alpha - 1}}\prod\limits_{j = 1}^s S_{{\mathfrak{Q}_j}}^{{\mathfrak{P}_j}}[{c_j}{\kern 1pt} {t^{{\lambda _j}}}]} \right.\\\left. {^\Gamma \aleph _{{r_j},{\kern 1pt} {s_j},{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U,V}{\kern 1pt} \left[ {z{\kern 1pt} {t^\mu }\Biggl|\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\\ \end{array}} \right]} \right)(x).\end{array}
Replace the incomplete ℵ-function and Srivastava polynomial by equation (24) and (4) respectively and by reversing the summation order, we discover the subsequent form:
(47)
\begin{array}{l}{T_3} = \sum\limits_{{\mathfrak{k}_1} = 0}^{[{\mathfrak{Q}_1}/{\mathfrak{P}_1}]} \cdots \sum\limits_{{\mathfrak{k}_s} = 0}^{[{\mathfrak{Q}_s}/{\mathfrak{P}_s}]} \frac{{{{( - {\mathfrak{Q}_1})}_{{\mathfrak{P}_1}{\kern 1pt} {\mathfrak{k}_1}}} \cdots {{( - {\mathfrak{Q}_s})}_{{\mathfrak{P}_s}{\kern 1pt} {\mathfrak{k}_s}}}}}{{{\mathfrak{k}_1}! \cdots {\mathfrak{k}_s}!}}{\kern 1pt} \times A_{{\mathfrak{Q}_1},{\kern 1pt} {\mathfrak{P}_1}}^{(1)} \cdots A_{{\mathfrak{Q}_s},{\kern 1pt} {\mathfrak{P}_s}}^{(s)}{\kern 1pt} {\kern 1pt} c_1^{{\mathfrak{k}_1}} \cdots c_s^{{\mathfrak{k}_s}}\\ \times \frac{1}{{2\pi \iota }}\int_\$ \;\Psi (q,\mathcal{Y})\;{z^{ - q}}\left( {\mathcal{D}_{0 + }^{\varsigma ,{\kern 1pt} {\varsigma ^\prime },{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime },\varpi }{\kern 1pt} {t^{\alpha + \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j} - \mu q - 1}}} \right)(x)dq,\end{array}
where Ψ (q,𝒴) is defined in equation (25).
Using equation (20) of Lemma 2, we discover the subsequent form:
(48)
\begin{array}{l}{T_3} = \sum\limits_{{\mathfrak{k}_1} = 0}^{[{\mathfrak{Q}_1}/{\mathfrak{P}_1}]} \cdots \sum\limits_{{\mathfrak{k}_s} = 0}^{[{\mathfrak{Q}_s}/{\mathfrak{P}_s}]} \frac{{{{( - {\mathfrak{Q}_1})}_{{\mathfrak{P}_1}{\kern 1pt} {\mathfrak{k}_1}}} \cdots {{( - {\mathfrak{Q}_s})}_{{\mathfrak{P}_s}{\kern 1pt} {\mathfrak{k}_s}}}}}{{{\mathfrak{k}_1}! \cdots {\mathfrak{k}_s}!}}{\kern 1pt} \times A_{{\mathfrak{Q}_1},{\kern 1pt} {\mathfrak{P}_1}}^{(1)} \cdots A_{{\mathfrak{Q}_s},{\kern 1pt} {\mathfrak{P}_s}}^{(s)}{\kern 1pt} {\kern 1pt} c_1^{{\mathfrak{k}_1}} \cdots c_s^{{\mathfrak{k}_s}}\\ \times \frac{1}{{2\pi \iota }}\int_\$ \;{x^{\alpha - \varsigma - {\varsigma ^\prime } + \varpi + \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j} - 1}}{\kern 1pt} {\kern 1pt} \Psi (q,\mathcal{Y})\;{(z{x^\mu })^{ - q}}\frac{{\Gamma (\alpha + \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j} - \mu q)}}{{\Gamma (\alpha - \varkappa + \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j} - \mu q)}} \times \\\frac{{\Gamma (\varsigma - \varkappa + \alpha + \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j} - \mu q){\kern 1pt} \Gamma (\alpha + \varsigma + {\varsigma ^\prime } + {\varkappa ^\prime } - \varpi + \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j} - \mu q)}}{{\Gamma (\alpha + \varsigma + {\varkappa ^\prime } - \varpi + \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j} - \mu q){\kern 1pt} \Gamma (\alpha + \varsigma + {\varsigma ^\prime } - \varpi + \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j} - \mu q)}}dq.\end{array}
Finally, after some adjustment of terms, we obtain RHS of equation (45).
Theorem 10
Let ϛ, ϛ', ϰ, ϰ', ϖ ,z,α ∈ ℂ and ℜ(ϖ) > 0,μ > 0,λk > 0 (k = 1,2,3,··· ,s),
\mu \mathop {\max }\limits_{1 \le j \le U} \left[ {\frac{{ - \Re ({\varepsilon _j})}}{{{\mathfrak{E}_j}}}} \right] < \Re (\alpha ) + \min [0,\Re (\varsigma - \varkappa ),\Re ({\varsigma ^\prime } + {\varkappa ^\prime } + \varsigma - \varpi )].
Further the parameters rj, sj, 𝔓 ∈ ℤ+ satisfying 0 ≤ V rj,0 ≤ U ≤ sj for j = 1,2,···m, 𝔇n, 𝔈n, 𝔈nj, 𝔇nj ∈ ℝ+, Λn,εn,Λnj,εnj ∈ ℂ (j = 1,2,··· , rj;n = 1,2,··· , sj),
A_{{\mathfrak{Q}_k},{\kern 1pt} {\mathfrak{P}_k}}^k
are real or complex numbers arbitrary constant for k = 1,2,3,··· ,s and ρi > 0 for i = 1,2,··· ,m, then the outcome shown below is accurate:
(49)
\begin{array}{l}\mathcal{D}_{0 + }^{\varsigma ,{\kern 1pt} {\varsigma ^\prime },{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime },\varpi }{\kern 1pt} \left( {{t^{\alpha - 1}}\prod\limits_{j = 1}^s S_{{\mathfrak{Q}_j}}^{{\mathfrak{P}_j}}[{c_j}{\kern 1pt} {t^{{\lambda _j}}}]} \right.\\\left. {^\gamma \aleph _{{r_j},{\kern 1pt} {s_j},{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U,V}\left[ {z{\kern 1pt} {t^\mu }\Biggl|\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\\ \end{array}} \right]} \right)(x)\\ = {x^{\alpha + \varsigma + {\varsigma ^\prime } - \varpi - 1}}\sum\limits_{{\mathfrak{k}_1} = 0}^{[{\mathfrak{Q}_1}/{\mathfrak{P}_1}]} \cdots \sum\limits_{{\mathfrak{k}_s} = 0}^{[{\mathfrak{Q}_s}/{\mathfrak{P}_s}]} \frac{{{{( - {\mathfrak{Q}_1})}_{{\mathfrak{P}_1}{\kern 1pt} {\mathfrak{k}_1}}} \cdots {{( - {\mathfrak{Q}_s})}_{{\mathfrak{P}_s}{\kern 1pt} {\mathfrak{k}_s}}}}}{{{\mathfrak{k}_1}! \cdots {\mathfrak{k}_s}!}}A_{{\mathfrak{Q}_1},{\kern 1pt} {\mathfrak{P}_1}}^{(1)} \cdots A_{{\mathfrak{Q}_s},{\kern 1pt} {\mathfrak{P}_s}}^{(s)}{\kern 1pt} {\kern 1pt} c_1^{{\mathfrak{k}_1}} \cdots c_s^{{\mathfrak{k}_s}}{\kern 1pt} {(x)^{\sum\limits_{j = 1}^s {\lambda _j}{\kern 1pt} {\mathfrak{k}_j}}}\\{ \times ^\gamma }\aleph _{{r_j} + 3,{\kern 1pt} {s_j} + 3,{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U,V + 3}{\kern 1pt} \left[ {z{\kern 1pt} {x^\mu }\Biggl|\begin{array}{*{20}{c}}{(1 - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),(1 - \alpha - \varsigma - {\varsigma ^\prime } - {\varkappa ^\prime } + \varpi - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} (1 - \varsigma - {\varsigma ^\prime } + \varpi - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),}\\ \end{array}} \right.\\\left. {\;\;\;\;\begin{array}{*{20}{c}}{(1 - \alpha - \varsigma + \varkappa - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} ({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{(1 - \alpha + \varkappa - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} (1 - \varsigma - {\varkappa ^\prime } + \varpi - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\end{array}} \right].\end{array}
Proof
Theorem 10 is proved in the same way as Theorem 9 with the same conditions.
The following corollary is obtained regarding the Saigo FIO [10] in light of the equation (16).
Corollary 11
Let ϛ, ϰ, ϖ ,z,α ∈ ℂ and ℜ(ϛ) > 0,μ > 0,λk > 0 (k = 1,2,3,··· ,s),
\mu \mathop {\max }\limits_{1 \le j \le U} \left[ {\frac{{ - \Re ({\varepsilon _j})}}{{{\mathfrak{E}_j}}}} \right] < \Re (\alpha ) + \min [0,\Re (\varsigma - \varkappa ),\Re (\varsigma - \varpi )].
Further the parameters rj, sj, 𝔓 ∈ ℤ+ satisfying 0 ≤ V ≤ rj,0 ≤ U ≤ sj for j = 1,2,···m, 𝔇n, 𝔈n, 𝔈nj, 𝔇nj ∈ ℝ+, Λn,εn,Λnj,εnj ∈ ℂ (j = 1,2,··· , rj;n = 1,2,··· , sj),
A_{{\mathfrak{Q}_k},{\kern 1pt} {\mathfrak{P}_k}}^k
are real or complex numbers arbitrary constant for k = 1,2,··· ,s and ρi > 0 for i = 1,2,··· ,m, then the outcome shown below is accurate:
(50)
\begin{array}{l}\mathcal{D}_{0 + }^{\varsigma ,{\kern 1pt} \varkappa ,{\kern 1pt} \varpi }{\kern 1pt} \left( {{t^{\alpha - 1}}\prod\limits_{j = 1}^s S_{{\mathfrak{Q}_j}}^{{\mathfrak{P}_j}}[{c_j}{\kern 1pt} {t^{{\lambda _j}}}]} \right.\\\left. {^\Gamma \aleph _{{r_j},{\kern 1pt} {s_j},{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U,V}{\kern 1pt} \left[ {z{\kern 1pt} {t^\mu }\Biggl|\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\\ \end{array}} \right]} \right)(x)\\ = {x^{\alpha + \varsigma + {\varsigma ^\prime } - \varpi - 1}}\sum\limits_{{\mathfrak{k}_1} = 0}^{[{\mathfrak{Q}_1}/{\mathfrak{P}_1}]} \cdots \sum\limits_{{\mathfrak{k}_s} = 0}^{[{\mathfrak{Q}_s}/{\mathfrak{P}_s}]} \frac{{{{( - {\mathfrak{Q}_1})}_{{\mathfrak{P}_1}{\kern 1pt} {\mathfrak{k}_1}}} \cdots {{( - {\mathfrak{Q}_s})}_{{\mathfrak{P}_s}{\kern 1pt} {\mathfrak{k}_s}}}}}{{{\mathfrak{k}_1}! \cdots {\mathfrak{k}_s}!}}A_{{\mathfrak{Q}_1},{\kern 1pt} {\mathfrak{P}_1}}^{(1)} \cdots A_{{\mathfrak{Q}_s},{\kern 1pt} {\mathfrak{P}_s}}^{(s)}{\kern 1pt} {\kern 1pt} c_1^{{\mathfrak{k}_1}} \cdots c_s^{{\mathfrak{k}_s}}{\kern 1pt} {(x)^{\sum\limits_{j = 1}^s {\lambda _j}{\kern 1pt} {\mathfrak{k}_j}}}\\{ \times ^\Gamma }\aleph _{{r_j} + 2,{\kern 1pt} {s_j} + 2,{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U,V + 2}\left[ {z{\kern 1pt} {x^\mu }\Biggl|\begin{array}{*{20}{c}}{(1 - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),(1 - \alpha - \varsigma - \varkappa - \varpi - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} (1 - \alpha - \varkappa - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),}\\ \end{array}} \right.\\\left. {\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{(1 - \alpha - \varpi - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\end{array}} \right].\end{array}
The same result can be obtained concerning Saigo fractional derivative operator for the lower incomplete ℵ-function.
Remark 8
By substituting ϰ = −ϛand ϰ = 0 in Corollary 11, respectively, we can also get findings for the fractional derivative operators of R-L and E-K.
Theorem 12
Let ϛ, ϛ', ϰ, ϰ', ϖ ,z,α ∈ ℂ and ℜ(ϖ) > 0,μ > 0,λk > 0 (k = 1,2,3,··· ,s),
\mu \mathop {\min }\limits_{1 \le j \le V} \left[ {\frac{{1 - \Re ({\Lambda _j})}}{{{\mathfrak{D}_j}}}} \right] + 1 > \Re (\alpha ) - \min [0,{\kern 1pt} \Re (\varpi - \varsigma - {\varsigma ^\prime } - V),\Re ( - {\varsigma ^\prime } - \varkappa + \varpi ),{\kern 1pt} - \Re ({\varkappa ^\prime })].
Further the parameters rj, sj, 𝔓 ∈ ℤ+ satisfying 0 ≤ V ≤ rj,0 ≤ U ≤ sj for j = 1,2,···m, 𝔇n, 𝔈n, 𝔈nj, 𝔇nj ∈ ℝ+, Λn,εn,Λnj,εnj ∈ ℂ (j = 1,2,··· , rj;n = 1,2,··· , sj),
A_{{\mathfrak{Q}_k},{\kern 1pt} {\mathfrak{P}_k}}^k
are real or complex numbers arbitrary constant for k = 1,2,··· ,s and ρi > 0 for i = 1,2,··· ,m, then the outcome shown below is accurate:
(51)
\begin{array}{l}\mathcal{D}_ - ^{\varsigma ,{\kern 1pt} {\varsigma ^\prime },{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime },\varpi }{\kern 1pt} \left( {{t^{\alpha - 1}}\prod\limits_{j = 1}^s S_{{\mathfrak{Q}_j}}^{{\mathfrak{P}_j}}[{c_j}{\kern 1pt} {t^{{\lambda _j}}}]} \right.\\\left. {^\Gamma \aleph _{{r_j},{\kern 1pt} {s_j},{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U,V}{\kern 1pt} \left[ {z{\kern 1pt} {t^\mu }\Biggl|\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\\ \end{array}} \right]} \right)(x)\\ = {x^{\alpha + \varsigma + {\varsigma ^\prime } - \varpi - 1}}\sum\limits_{{\mathfrak{k}_1} = 0}^{[{\mathfrak{Q}_1}/{\mathfrak{P}_1}]} \cdots \sum\limits_{{\mathfrak{k}_s} = 0}^{[{\mathfrak{Q}_s}/{\mathfrak{P}_s}]} \frac{{{{( - {\mathfrak{Q}_1})}_{{\mathfrak{P}_1}{\kern 1pt} {\mathfrak{k}_1}}} \cdots {{( - {\mathfrak{Q}_s})}_{{\mathfrak{P}_s}{\kern 1pt} {\mathfrak{k}_s}}}}}{{{\mathfrak{k}_1}! \cdots {\mathfrak{k}_s}!}}A_{{\mathfrak{Q}_1},{\kern 1pt} {\mathfrak{P}_1}}^{(1)} \cdots A_{{\mathfrak{Q}_s},{\kern 1pt} {\mathfrak{P}_s}}^{(s)}{\kern 1pt} {\kern 1pt} c_1^{{\mathfrak{k}_1}} \cdots c_s^{{\mathfrak{k}_s}}{\kern 1pt} {(x)^{\sum\limits_{j = 1}^s {\lambda _j}{\kern 1pt} {\mathfrak{k}_j}}}\\{ \times ^\Gamma }\aleph _{{r_j} + 3,{\kern 1pt} {s_j} + 3,{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U + 3,V}{\kern 1pt} \left[ {z{\kern 1pt} {x^\mu }\Biggl|\begin{array}{*{20}{c}}{(1 - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),(1 - \alpha - {\varsigma ^\prime } + {\varkappa ^\prime } - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} (1 - \varsigma - {\varsigma ^\prime } + \varpi - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),}\\ \end{array}} \right.\\\left. {\;\;\;\;\begin{array}{*{20}{c}}{(1 - \alpha - \varsigma - {\varsigma ^\prime } - \varkappa + \varpi - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} ({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{(1 - \alpha + {\varkappa ^\prime } - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} (1 - {\varsigma ^\prime } - \varkappa + \varpi - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\end{array}} \right].\end{array}
Proof
The LHS of equation (51) is:
(52)
\begin{array}{l}{T_4} = \mathcal{D}_ - ^{\varsigma ,{\kern 1pt} {\varsigma ^\prime },{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime },\varpi }{\kern 1pt} \left( {{t^{\alpha - 1}}\prod\limits_{j = 1}^s S_{{\mathfrak{Q}_j}}^{{\mathfrak{P}_j}}[{c_j}{\kern 1pt} {t^{{\lambda _j}}}]} \right.\\\left. {^\Gamma \aleph _{{r_j},{\kern 1pt} {s_j},{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U,V}{\kern 1pt} \left[ {z{\kern 1pt} {t^\mu }\Biggl|\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\\ \end{array}} \right]} \right)(x).\end{array}
Replace the incomplete ℵ-function and Srivastava polynomial by equation (24) and (4) respectively and by reversing the summation order, we discover the subsequent form:
(53)
\begin{array}{l}{T_3} = \sum\limits_{{\mathfrak{k}_1} = 0}^{[{\mathfrak{Q}_1}/{\mathfrak{P}_1}]} \cdots \sum\limits_{{\mathfrak{k}_s} = 0}^{[{\mathfrak{Q}_s}/{\mathfrak{P}_s}]} \frac{{{{( - {\mathfrak{Q}_1})}_{{\mathfrak{P}_1}{\kern 1pt} {\mathfrak{k}_1}}} \cdots {{( - {\mathfrak{Q}_s})}_{{\mathfrak{P}_s}{\kern 1pt} {\mathfrak{k}_s}}}}}{{{\mathfrak{k}_1}! \cdots {\mathfrak{k}_s}!}}{\kern 1pt} \times A_{{\mathfrak{Q}_1},{\kern 1pt} {\mathfrak{P}_1}}^{(1)} \cdots A_{{\mathfrak{Q}_s},{\kern 1pt} {\mathfrak{P}_s}}^{(s)}{\kern 1pt} {\kern 1pt} c_1^{{\mathfrak{k}_1}} \cdots c_s^{{\mathfrak{k}_s}}\\ \times \frac{1}{{2\pi \iota }}\int_\$ \;\Psi (q,\mathcal{Y})\;{z^{ - q}}\left( {\mathcal{D}_ - ^{\varsigma ,{\kern 1pt} {\varsigma ^\prime },{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime },\varpi }{\kern 1pt} {t^{ - ( - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j} + \mu q + 1)}}} \right)(x)dq,\end{array}
where Ψ (q,𝒴) is defined in equation (25).
Using equation (21) of Lemma 2, we discover the subsequent form:
(54)
\begin{array}{l}{T_4} = \sum\limits_{{\mathfrak{k}_1} = 0}^{[{\mathfrak{Q}_1}/{\mathfrak{P}_1}]} \cdots \sum\limits_{{\mathfrak{k}_s} = 0}^{[{\mathfrak{Q}_s}/{\mathfrak{P}_s}]} \frac{{{{( - {\mathfrak{Q}_1})}_{{\mathfrak{P}_1}{\kern 1pt} {\mathfrak{k}_1}}} \cdots {{( - {\mathfrak{Q}_s})}_{{\mathfrak{P}_s}{\kern 1pt} {\mathfrak{k}_s}}}}}{{{\mathfrak{k}_1}! \cdots {\mathfrak{k}_s}!}}{\kern 1pt} \times A_{{\mathfrak{Q}_1},{\kern 1pt} {\mathfrak{P}_1}}^{(1)} \cdots A_{{\mathfrak{Q}_s},{\kern 1pt} {\mathfrak{P}_s}}^{(s)}{\kern 1pt} {\kern 1pt} c_1^{{\mathfrak{k}_1}} \cdots c_s^{{\mathfrak{k}_s}}\\ \times \frac{1}{{2\pi \iota }}\int_\$ \;{x^{\alpha - \varsigma - {\varsigma ^\prime } + \varpi + \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j} - 1}}{\kern 1pt} {\kern 1pt} \Psi (q,\mathcal{Y})\;{(z{x^\mu })^{ - q}}\frac{{\Gamma (1 - \alpha + {\varkappa ^\prime } - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j} + \mu q)}}{{\Gamma (1 - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j} + \mu q)}} \times \\\frac{{\Gamma (1 - \varsigma - {\varsigma ^\prime } + \varpi - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j} + \mu q){\kern 1pt} \Gamma (1 - \alpha - {\varsigma ^\prime } - \varkappa + \varpi - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j} + \mu q)}}{{\Gamma (1 - \alpha - {\varsigma ^\prime } + {\varkappa ^\prime } - \varpi - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j} + \mu q){\kern 1pt} \Gamma (1 - \alpha - \varsigma - {\varsigma ^\prime } - \varkappa + \varpi - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j} + \mu q)}}dq.\end{array}
Finally, after some adjustment of terms, we obtain RHS of equation (51).
Theorem 13
Let ϛ, ϛ', ϰ, ϰ', ϖ ,z,α ∈ ℂ and ℜ(ϖ) > 0,μ > 0,λk > 0 (k = 1,2,3,··· ,s),
\mu \mathop {\min }\limits_{1 \le j \le V} \left[ {\frac{{1 - \Re ({\Lambda _j})}}{{{\mathfrak{D}_j}}}} \right] + 1 > \Re (\alpha ) - \min [0,{\kern 1pt} \Re (\varpi - \varsigma - {\varsigma ^\prime } - V),\Re ( - {\varsigma ^\prime } - \varkappa + \varpi ),{\kern 1pt} - \Re ({\varkappa ^\prime })].
Further the parameters rj, sj, 𝔓 ∈ ℤ+ satisfying 0 ≤ V ≤ rj,0 ≤ U ≤ sj for j = 1,2,···m, 𝔇n, 𝔈n, 𝔈nj, 𝔇nj ∈ ℝ+, Λn,εn,Λnj,εnj ∈ ℂ (j = 1,2,··· , rj;n = 1,2,··· , sj),
A_{{\mathfrak{Q}_k},{\kern 1pt} {\mathfrak{P}_k}}^k
are real or complex numbers arbitrary constant for k = 1,2,··· ,s and ρi > 0 for i = 1,2,··· ,m, then the outcome shown below is accurate:
(55)
\begin{array}{l}\mathcal{D}_ - ^{\varsigma ,{\kern 1pt} {\varsigma ^\prime },{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime },\varpi }{\kern 1pt} \left( {{t^{\alpha - 1}}\prod\limits_{j = 1}^s S_{{\mathfrak{Q}_j}}^{{\mathfrak{P}_j}}[{c_j}{\kern 1pt} {t^{{\lambda _j}}}]} \right.\\\left. {^\gamma \aleph _{{r_j},{\kern 1pt} {s_j},{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U,V}{\kern 1pt} \left[ {z{\kern 1pt} {t^\mu }\Biggl|\begin{array}{*{20}{c}}\begin{array}{l}\\({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{({\Lambda _n},{\mathfrak{D}_n})_{2,V}},{\kern 1pt} {[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]_{V + 1,{r_j}}}\end{array}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\\ \end{array}} \right]} \right)(x)\\ = {x^{\alpha + \varsigma + {\varsigma ^\prime } - \varpi - 1}}\sum\limits_{{\mathfrak{k}_1} = 0}^{[{\mathfrak{Q}_1}/{\mathfrak{P}_1}]} \cdots \sum\limits_{{\mathfrak{k}_s} = 0}^{[{\mathfrak{Q}_s}/{\mathfrak{P}_s}]} \frac{{{{( - {\mathfrak{Q}_1})}_{{\mathfrak{P}_1}{\kern 1pt} {\mathfrak{k}_1}}} \cdots {{( - {\mathfrak{Q}_s})}_{{\mathfrak{P}_s}{\kern 1pt} {\mathfrak{k}_s}}}}}{{{\mathfrak{k}_1}! \cdots {\mathfrak{k}_s}!}}A_{{\mathfrak{Q}_1},{\kern 1pt} {\mathfrak{P}_1}}^{(1)} \cdots A_{{\mathfrak{Q}_s},{\kern 1pt} {\mathfrak{P}_s}}^{(s)}{\kern 1pt} {\kern 1pt} c_1^{{\mathfrak{k}_1}} \cdots c_s^{{\mathfrak{k}_s}}{\kern 1pt} {(x)^{\sum\limits_{j = 1}^s {\lambda _j}{\kern 1pt} {\mathfrak{k}_j}}}\\{ \times ^\gamma }\aleph _{{r_j} + 3,{\kern 1pt} {s_j} + 3,{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U + 3,V}{\kern 1pt} \left[ {z{\kern 1pt} {x^\mu }\Biggl|\begin{array}{*{20}{c}}{(1 - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),(1 - \alpha - {\varsigma ^\prime } + {\varkappa ^\prime } - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} (1 - \varsigma - {\varsigma ^\prime } + \varpi - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),}\\ \end{array}} \right.\\\left. {\;\;\;\;\begin{array}{*{20}{c}}{(1 - \alpha - \varsigma - {\varsigma ^\prime } - \varkappa + \varpi - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} ({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{(1 - \alpha + {\varkappa ^\prime } - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} (1 - {\varsigma ^\prime } - \varkappa + \varpi - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\end{array}} \right].\end{array}
Proof
Theorem 13 is proved in the same way as Theorem 12 with the same conditions.
The following corollary is obtained regarding the Saigo fractional derivative operator [10] in light of the equation (16).
Corollary 14
Let ϛ, ϛ', ϰ, ϰ', ϖ ,z,α ∈ ℂ and ℜ(ϖ) > 0,μ > 0,λk > 0 (k = 1,2,3,··· ,s),
\mu \mathop {\min }\limits_{1 \le j \le V} \left[ {\frac{{1 - \Re ({\Lambda _j})}}{{{\mathfrak{D}_j}}}} \right] + 1 > \Re (\alpha ) - \min [0,{\kern 1pt} \Re (\varpi - \varsigma - {\varsigma ^\prime } - V),\Re ( - {\varsigma ^\prime } - \varkappa + \varpi ),{\kern 1pt} - \Re ({\varkappa ^\prime })].
Further the parameters rj, sj, 𝔓 ∈ ℤ+ satisfying 0 ≤ V ≤ rj,0 ≤ U ≤ sj for j = 1,2,···m, 𝔇n, 𝔈n, 𝔈nj, 𝔇nj ∈ ℝ+, Λn,εn,Λnj,εnj ∈ ℂ (j = 1,2,··· , rj;n = 1,2,··· , sj),
A_{{\mathfrak{Q}_k},{\kern 1pt} {\mathfrak{P}_k}}^k
are real or complex numbers arbitrary constant for k = 1,2,··· ,s and ρi > 0 for i = 1,2,··· ,m, then the following result holds:
(56)
\begin{array}{l}\mathcal{D}_ - ^{\varsigma ,{\kern 1pt} \varkappa ,{\kern 1pt} \varpi }{\kern 1pt} \left( {{t^{\alpha - 1}}\prod\limits_{j = 1}^s S_{{\mathfrak{Q}_j}}^{{\mathfrak{P}_j}}[{c_j}{\kern 1pt} {t^{{\lambda _j}}}]} \right.\\\left. {^\Gamma \aleph _{{r_j},{\kern 1pt} {s_j},{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U,V}{\kern 1pt} \left[ {z{\kern 1pt} {t^\mu }\Biggl|\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\\ \end{array}} \right]} \right)(x)\\ = {x^{\alpha + \varkappa - 1}}\sum\limits_{{\mathfrak{k}_1} = 0}^{[{\mathfrak{Q}_1}/{\mathfrak{P}_1}]} \cdots \sum\limits_{{\mathfrak{k}_s} = 0}^{[{\mathfrak{Q}_s}/{\mathfrak{P}_s}]} \frac{{{{( - {\mathfrak{Q}_1})}_{{\mathfrak{P}_1}{\kern 1pt} {\mathfrak{k}_1}}} \cdots {{( - {\mathfrak{Q}_s})}_{{\mathfrak{P}_s}{\kern 1pt} {\mathfrak{k}_s}}}}}{{{\mathfrak{k}_1}! \cdots {\mathfrak{k}_s}!}}A_{{\mathfrak{Q}_1},{\kern 1pt} {\mathfrak{P}_1}}^{(1)} \cdots A_{{\mathfrak{Q}_s},{\kern 1pt} {\mathfrak{P}_s}}^{(s)}{\kern 1pt} {\kern 1pt} c_1^{{\mathfrak{k}_1}} \cdots c_s^{{\mathfrak{k}_s}}{\kern 1pt} {(x)^{\sum\limits_{j = 1}^s {\lambda _j}{\kern 1pt} {\mathfrak{k}_j}}}\\{ \times ^\Gamma }\aleph _{{r_j} + 2,{\kern 1pt} {s_j} + 2,{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U + 2,V}{\kern 1pt} \left[ {z{\kern 1pt} {x^\mu }\Biggl|\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{\kern 1pt} (1 - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} (1 - \varkappa - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),}\\ \end{array}} \right.\\\left. {\;\;\;\;\begin{array}{*{20}{c}}{(1 - \alpha - \varkappa + \varpi - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} {{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{(1 + \varsigma + \varpi - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\end{array}} \right].\end{array}
The same result can be obtained regarding Saigo fractional derivative operator for the lower incomplete ℵ-function.
Remark 9
By substituting ϰ = −ϛ and ϰ = 0 in Corollary 14, respectively, we can also get findings for the fractional derivative operators of R-L and E-K.