Have a personal or library account? Click to login
Dynamic nature of analytical soliton solutions of the (1+1)-dimensional Mikhailov-Novikov-Wang equation using the unified approach Cover

Dynamic nature of analytical soliton solutions of the (1+1)-dimensional Mikhailov-Novikov-Wang equation using the unified approach

By: Amit Kumar and  Sachin Kumar  
Open Access
|Sep 2023

References

  1. Hirota R., The Direct Method in Soliton Theory, Cambridge University Press, 155, 2004.
  2. Zhao Y.M., F-Expansion method and its application for finding new exact solutions to the Kudryashov-Sinelshchikov equation, Journal of Applied Mathematics, 2013(895760), 1-7, 2013.
  3. Wazwaz A.M., The tanh method for traveling wave solutions of nonlinear equations, Applied Mathematics and Computation, 154(3), 713-723, 2004.
  4. Wazwaz A.M., The extended tanh method for the Zakharov-Kuznestsov (ZK) equation, the modified ZK equation and its generalized forms, Communications in Nonlinear Science and Numerical Simulation, 13(6), 1039-1047, 2008.
  5. Ma W.X., Lee J.H., A transformed rational function method and exact solutions to the (3+1) dimensional Jimbo-Miwa equation, Chaos Solitons and Fractals, 42(3), 1356-1363, 2009.
  6. Kumar S., Kumar A., Abundant closed-form wave solutions and dynamical structures of soliton solutions to the (3+1)-dimensional BLMP equation in mathematical physics, Journal of Ocean Engineering and Science, 7(2), 178-187, 2021.
  7. Rogers C., Schief W.K., Bäcklund and Darboux Transformations: Geometry and Modern applications in Soliton Theory, Cambridge University Press, Cambridge, UK, 2002.
  8. Wadati M., Sanuki H., Konno K., Relationships among inverse method, Bäclaund transformation and an infinity number of conservation laws, Progress of Theoretical Physics, 53(2), 419-436, 1975.
  9. Mahak N., Akram G., Extension of rational sine-cosine and rational sinh-cosh techniques to extract solutions for the perturbed NLSE with Kerr law nonlinearity, The European Physical Journal Plus, 134(159), 1-10, 2019.
  10. Ma W.X., Abdeljabbar A., A bilinear Bäcklund transformation of a (3+1)-dimensional generalized KP equation, Applied Mathematics Letters, 25(10), 1500-1504, 2012.
  11. Rezazadeh H., Odabasi M., Tariq K.U., Abazari R., Baskonus H.M., On the conformable nonlinear Schrödinger equation with second order spatiotemporal and group velocity dispersion coefficients, Chinese Journal of Physics, 72, 403-414, 2021.
  12. Kumar S., Kumar A., Lie symmetry reductions and group invariant solutions of (2+1)-dimensional modified Veronese web equation, Nonlinear Dynamics, 98, 1891-1903, 2019.
  13. Kumar S., Kumar A., Kharbanda H., Lie symmetry analysis and generalized invariant solutions of (2+1)-dimensional dispersive long wave (DLW) equations, Physica Scripta, 95, 065207, 2020.
  14. Kumar A., Kumar S., Kharbanda H., Closed-form invariant solutions from the Lie symmetry analysis and dynamics of the solitonic profiles for the (2+1)-dimensional modified Heisenberg ferromagnetic system, Modern Physics Letter B, 36(7), 2150609, 2022.
  15. Kumar S., Kumar A., Dynamical structures of solitons and some new types of exact solutions for the (2+1)-dimensional DJKM equation using Lie symmetry analysis, Modern Physics Letters B, 34, 2150015, 2020.
  16. Kumar S., Ma W.X., Kumar A., Lie symmetries, optimal system and group-invariant solutions of the (3+1)-dimensional generalized KP equation, Chinese Journal of Physics, 69, 1-23, 2021.
  17. Kumar S., Kumar D., Kumar A., Lie symmetry analysis for obtaining the abundant exact solutions, optimal system and dynamics of solitons for a higher-dimensional Fokas equation, Chaos Solitons and Fractals, 142, 110507, 2021.
  18. Wang M.L., Solitary wave solutions for variant Boussinesq equations, Physics Letters A, 199(3-4), 169–72, 1995.
  19. Ghanbari B., Inc M., A new generalized exponential rational function method to find exact special solutions for the resonance nonlinear Schrödinger equation, The European Physical Journal Plus, 133, 142, 2018.
  20. Kumar S., Kumar A., Wazwaz A.M., New exact solitary wave solutions of the strain wave equation in microstructured solids via the generalized exponential rational function method, The European Physical Journal Plus, 135, 870, 2020.
  21. Kumar S., Kumar A., Dynamical behaviors and abundant optical soliton solutions of the cold bosonic atoms in a Zig-Zag optical lattice model using two integral schemes, Mathematics and Computers in Simulation, 201, 254-274, 2022.
  22. Kumar S., Kumar A., Newly generated optical wave solutions and dynamical behaviors of the highly nonlinear coupled Davey-Stewartson Fokas system in monomode optical fibers, Optical and Quantum Electronics, 55, 566, 2023.
  23. Gözükızıl Ö.F., Akçağıl S., Aydemir T., Unification of all hyperbolic tangent function methods, Open Physics, 14(1), 524-541, 2016.
  24. Akçağıl S., Aydemir T., A new application of the unified method, New Trends in Mathematical Sciences, 6(1), 185-199, 2018.
  25. Das N., Ray S.S., Exact traveling wave solutions and soliton solutions of conformable M-fractional modified nonlinear Schrödinger model, Optik, 287, 171060, 2023.
  26. Das N., Ray S.S., Highly dispersive optical solitons and solitary wave solutions for the (2+1)-dimensional Mel’nikov equation in modeling interaction of long waves with short wave packets in two dimensions, Journal of Nonlinear Optical Physics and Materials, DOI:10.1142/S0218863523500753, 2023.
  27. Wu J., A novel general nonlocal reverse-time nonlinear Schrödinger equation and its soliton solutions by Riemann-Hilbert method, Nonlinear Dynamics, 111, 16367-16376, 2023.
  28. Mikhailov A.V., Novikov V.S., Wang J.P., On classification of integrable nonevolutionary equations, Studies in Applied Mathematics, 118(4), 419-457, 2007.
  29. Mikhailov A.V., Novikov V.S., Perturbative symmetry approach, Journal of Physics A: Mathematical and General, 35(22), 4775, 2002.
  30. Raza N., Seadawy A.R., Arshed S., Rafiq M.H., A variety of soliton solutions for the Mikhailov-Novikov-Wang dynamical equation via three analytical methods, Journal of Geometry and Physics, 176, 104515, 2022.
  31. Ray S.S., Singh S., New various multisoliton kink-type solutions of the (1+1)-dimensional Mikhailov-Novikov-Wang equation, Mathematical Methods in the Applied Sciences, 44(18), 14690-14702, 2021.
  32. Akbulut A., Kaplan M., Kaabar M.K.A., New exact solutions of the Mikhailov-Novikov-Wang equation via three novel techniques, Journal of Ocean Engineering and Science, 8(1), 103-110, 2021.
  33. Bekir A., Shehata M.S.M., Zahran E.H.M., Comparison between the new exact and numerical solutions of the Mikhailov-Novikov-Wang equation, Numerical Methods for Partial Differential Equations, DOI:10.1002/num.22775, 2021.
  34. Khater M.M.A., Soliton propagation under diffusive and nonlinear effects in physical systems; (1+1)-dimensional MNW integrable equation, Physics Letters A, 480, 128945, 2023.
  35. Khater M.M.A., Advancements in computational techniques for precise solitary wave Ssolutions in the (1+1-dimensional Mikhailov-Novikov-Wang equation, International Journal of Theoretical Physics, 62, 152, 2023.
  36. Demiray ¸S.T., Bayrakci U., A study on the solutions of (1+1)-dimensional Mikhailov-Novikov-Wang equation, Mathematical Modelling and Numerical Simulation with Applications, 3(2), 101-110, 2023.
  37. Han T., Khater M.M.A, Numerical and computational investigation of soliton propagation in physical systems via computational schemes: (1+1)-dimensional MNW integrable equation, Results in Physics, 50, 106567, 2023.
Language: English
Page range: 217 - 228
Submitted on: Jul 14, 2023
|
Accepted on: Sep 3, 2023
|
Published on: Sep 13, 2023
Published by: Harran University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2023 Amit Kumar, Sachin Kumar, published by Harran University
This work is licensed under the Creative Commons Attribution 4.0 License.