Have a personal or library account? Click to login
Ambarzumyan theorem by zeros of eigenfunction Cover

References

  1. Bairamov E., Aygar Y., Eren B., Scattering theory of impulsive Sturm-Liouville equations, Filomat, 31(17), 5401-5409, 2017.
  2. Cabri, O., Mamedov, K.R., Riesz basisness of root functions of a Sturm-Liouville operator with conjugate conditions, Lobachevskii Journal of Mathematics, 41, 1-6, 2020.
  3. Kerimov N.B., Mamedov K.R., On the Riesz basis property of the root functions in certain regular boundary value problems, Mathematical Notes, 64, 483-487, 1998.
  4. Koyunbakan H., Pinasco J.P., Scarola C., Energy dependent potential problems for the one dimensional p-Laplacian operator, Nonlinear Analysis: Real World Applications, 45, 285-298, 2019.
  5. Mamedov, K.R., On the basis property in Lp(0,1) of the root functions of a class non self adjoint Sturm-Liouville operators, European Journal of Pure and Applied Mathematics, 3(5), 831-838, 2010.
  6. Mosazadeh S., Akbarfam A.J., Inverse and expansion problems with boundary conditions rationally dependent on the eigenparameter, Bulletin of Iranian Mathematical Society, 46, 67-78, 2020.
  7. Chuanfu Y., Xiaoping Y., Ambarzumyan’s theorem with eigenparameter in the boundary conditions, Acta Mathematica Scientia, 31(4), 1561-1568, 2011.
  8. Yurko V.A., On Ambarzumyan-type theorems, Applied Mathematics Letters, 26(4), 506-509, 2013.
  9. Cheng Y.H., Law C.K., The inverse nodal problem for Hill’s equation, Inverse Problems, 22(3), 891-901, 2006.
  10. McLaughlin J.R., Inverse spectral theory using nodal points as data, a uniqueness result, Journal of Differential Equation, 73, 354-362, 1998.
  11. Ambarzumian V., Über eine frage der eigenwerttheorie, Zeitschrift für Physik, 53, 690-695, 1929.
  12. Yang J., Yang C.F., Inverse problems on the least eigenvalue, Results in Mathematics 65, 321-332, 2014.
  13. Bonder J.F., Pinasco J.P., Asymptotic behavior of the Eigenvalues of the one dimensional weighted p-Laplace operator, Arkiv för Matematics, 41, 267-280, 2003.
  14. Brown B.M., Eastham M.S.P., Eigenvalues of the radial p-Laplacian with a potential on (0, ∞), Journal of Computational and Applied Mathematics, 208(1), 111-119, 2007.
  15. Drábek P., Manásevich R., On the closed solution to some nonhomogeneous eigenvalue problems with p-Laplacian, Differential Integral Equations, 12(6), 773-788, 1999.
  16. Pino M.D., Drábek P., Manásevich R., The Fredholm alternative at the first eigenvalue for the one-dimensional p-Laplacian, Journal of Differential Equations, 151(2), 386-419, 1999.
  17. Walter W., Sturm-Liouville theory for the radial p-operator, Mathematische Zeitschrift, 227(1), 175-185, 1998.
  18. Law C.K., Wang W.C., The inverse nodal problem and the Ambarzumyan problem for the p-Laplacian, Proceedings of the Royal Society of Edinburgh Section A Mathematics, 139(6), 1261-1273, 2009.
  19. Cheng Y.H., Law C.K., Lian W.C, Wang W.C., An inverse nodal problem and Ambarzumyan problem for the periodic p-Laplacian operator with integrable potentials, Taiwanese Journal of Mathematics, 19(4), 1305-1316, 2015.
  20. Wang Y.P., Bondarenko N., Shieh C.T., The inverse problem for differential pencils on a star-shaped graph with mixed spectral data, Science China Mathematics, 63, 1559-1570, 2020.
Language: English
Page range: 211 - 216
Submitted on: Jun 20, 2023
|
Accepted on: Aug 10, 2023
|
Published on: Sep 13, 2023
Published by: Harran University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2023 Beyhan Kemaloglu, published by Harran University
This work is licensed under the Creative Commons Attribution 4.0 License.