References
- Zhao P.S., Dong F., He D., Zhao X.J., Zhang X.L., Zhang W.Z., Yao Q., Liu H.Y., Characteristics of concentrations and chemical compositions for PM2.5 in the region of Beijing, Tianjin, and Hebei, China, Atmospheric Chemistry and Physics, 13(9), 4631-4644, 2013.
- Xing Y.F., Xu Y.H., Shi M.H., Lian Y.X., The impact of PM2.5 on the human respiratory system, Journal of thoracic disease, 8(1), E69-E74, 2016.
- Grantz D.A., Garner J.H.B., Johnson D.W., Ecological effects of particulate matter, Environment international, 29(2-3), 213-239, 2003.
- Pérez P., Trier A., Reyes J., Prediction of PM2.5 concentrations several hours in advance using neural networks in Santiago, Chile, Atmospheric Environment, 34(8), 1189-1196, 2000.
- Ordieres J.B., Vergara E.P., Capuz R.S., Salazar R.E., Neural network prediction model for fine particulate matter (PM2.5) on the USMexico border in El Paso (Texas) and Ciudad Juárez (Chihuahua), Environmental Modelling Software, 20(5), 547-559, 2005.
- Zhou Q., Jiang H., Wang J., Zhou J., A hybrid model for PM2.5 forecasting based on ensemble empirical mode decomposition and a general regression neural network, Science of the Total Environment, 496, 264-274, 2014.
- Elbayoumi M., Ramli N.A., Yusof N.F.F., Development and comparison of regression models and feedforward back-propagation neural network models to predict seasonal indoor PM2.5−10 and PM2.5 concentrations in naturally ventilated schools, Atmospheric Pollution Research, 6(6), 1013-1023, 2015.
- Biancofiore F., Busilacchio M., Verdecchia M., Tomassetti B., Aruffo E., Bianco S., Tommaso D.S., Colangeli C., Rosatelli G., Carlo D.P., Recursive neural network model for analysis and forecast of PM10 and PM2.5, Atmospheric Pollution Research, 8(4), 652-659, 2017.
- Chen B., Wang X., Yu L., Wang H., Li Y., Chen J., Chen B., Wang X., Yu L., Wang H., Li Y., Chen J., Zhu J., Nan H., Hou L., Prediction of PM2.5 concentration in a agricultural park based on BP artificial neural network, Advance Journal of Food Science and Technology, 11(4), 274-280, 2016.
- Ong B.T., Sugiura K., Zettsu K., Dynamically pre-trained deep recurrent neural networks using environmental monitoring data for predicting PM2.5, Neural Computing and Applications, 27, 1553-1566, 2016.
- Jiang P., Dong Q., Li P., A novel hybrid strategy for PM2.5 concentration analysis and prediction, Journal of environmental management, 196, 443-457, 2017.
- Zhang G., Rui X., Fan Y., Critical review of methods to estimate PM2.5 concentrations within specified research region, ISPRS International Journal of Geo-Information, 7(9), 368, 2018.
- Zhang Z., Wang J., Hart J.E., Laden F., Zhao C., Li T., Zheng P., Li D., Ye Z., Chen K., National scale spatiotemporal land-use regression model for PM2.5, PM10 and NO2 concentration in China, Atmospheric environment, 192, 48-54, 2018.
- Liu H., Duan Z., Chen C., A hybrid framework for forecasting PM2.5 concentrations using multi-step deterministic and probabilistic strategy, Air Quality Atmosphere and Health, 12, 785-795, 2019.
- Doreswamy, Harishkumar K.S., Yogesh K.M., Gad I., Forecasting air pollution particulate matter (PM2.5) using machine learning regression models, Procedia Computer Science, 171, 2057-2066, 2020.
- Kumar S., Mishra S., Singh S.K., A machine learning-based model to estimate PM2.5 concentration levels in Delhi’s atmosphere, Heliyon, e05618, 2020.
- Chang-Hoi H., Park I., Oh H.R., Gim H.J., Hur S.K., Kim J., Choi D.R., Development of a PM2.5 prediction model using a recurrent neural network algorithm for the Seoul metropolitan area Republic of Korea, Atmospheric Environment, 245, 118021, 2021.
- Krogh A., What are artificial neural networks?, Nature biotechnology, 26, 195-197, 2008.
- Prasad K.V., Vaidya H., Swamy K.K., Renuka S., Pumpkin Seeds Classification: Artificial Neural Network and Machine Learning Methods, Journal of International Academy of Physical Sciences, 27(1), 22-23, 2023.
- Song Y.Y., Lu Y., Decision tree methods: applications for classification and prediction, Shanghai Arch Psychiatry, 27(2), 130, 2015.
- Maulud D., Abdulazeez A.M., A review on linear regression comprehensive in machine learning, Journal of Applied Science and Technology Trends, 1(4), 140-147, 2020.
- Chicco D., Warrens M.J., Jurman G., The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation, PeerJ Computer Science, 7, e623, 2021.