Have a personal or library account? Click to login
New generalized Mellin transform and applications to partial and fractional differential equations Cover

New generalized Mellin transform and applications to partial and fractional differential equations

By: Enes Ata and  I. Onur Kıymaz  
Open Access
|Jun 2023

References

  1. Watugala G.K., Sumudu transform: a new integral transform to solve differential equations and control engineering problems, Integrated Education, 24(1), 35-43, 1993.
  2. Khan Z.H., Khan W.A., N-transform-properties and applications, NUST Journal of Engineering Sciences, 1(1), 127-133, 2008.
  3. Elzaki T.M., The new integral transform “Elzaki transform”, Global Journal of Pure and Applied Mathematics, 7(1), 57-64, 2011.
  4. Upadhyaya L.M., Introducing the Upadhyaya integral transform, Bulletin of Pure and Applied Sciences, 38E(1), 471-510, 2019.
  5. Jafari H., A new general integral transform for solving integral equations, Journal of Advanced Research, 32, 133-138, 2021.
  6. Luchko Y., Martinez H., Trujillo J., Fractional Fourier transform and some of its applications, Fractional Calculus and Applied Analysis An International Journal for Theory and Applications, 11(4), 457-470, 2008.
  7. Jumarie G., Fourier’s transform of fractional order via Mittag-Leffler function and modified Riemann-Liouville derivative, Journal of Applied Mathematics & Informatics, 26(5-6), 1101-1121, 2008.
  8. Romero L.G., Cerutti L.A., Luque L.L., A new fractional Fourier transform and convolution products, International Journal of Pure and Applied Mathematics, 66(4), 397-408, 2011.
  9. Mahor T.C., Mishra R., Jain R., Fractionalization of Fourier sine and Fourier cosine transforms and their applications, International Journal of Scientific & Technology Research, 9(4), 1720-1725, 2020.
  10. Kumar V., On a generalized fractional Fourier transform, Palestine Journal of Mathematics, 9(2), 903-907, 2020.
  11. Debnath L., Bhatta D., Integral transforms and their applications, Third Edition, CRC Press, Boca Raton, London, New York, 2015.
  12. Aziz T., Rehman M.U., Generalized Mellin transform and its applications in fractional calculus, Computational and Applied Mathematics, 41(88), 1-16, 2022.
  13. Duraković N., Grbić T., Rapajić S., Medić S., Buhmiler S., g-Mellin transform, 2018 IEEE 16th International Symposium on Intelligent Systems and Informatics (SISY), 000075-000080, 2018.
  14. Erdoğan E., Kocabaş S., Dernek A.N., Some results on the generalized Mellin transforms and applications, Konuralp Journal of Mathematics, 7(1), 175-181, 2019.
  15. Fitouhi A., Bettaibi N., Brahim K., The Mellin transform in quantum calculus, Constructive Approximation, 23, 305-323, 2006.
  16. Saha M., Singh M.M.P., Generalized Laplace-Mellin integral transformation, Mr. Mampi Saha International Journal of Engineering Research and Applications, 5(5)(Part-3), 71-76, 2015.
  17. González-Gaxiola O., Santiago J.A., An a -Mellin transform and some of its applications, International Journal of Contemporary Mathematical Sciences, 7(45-48), 2353-2361, 2012.
  18. Yang J., Sarkar T.K., Antonik P., Applying the Fourier-modified Mellin transform (FMMT) to Doppler-distorted wave-forms, Digital Signal Processing, 17(6), 1030-1039, 2007.
  19. Belmor S., Ravichandran C., Jarad F., Nonlinear generalized fractional differential equations with generalized fractional integral conditions, Journal of Taibah University for Science, 14(1), 114-123, 2020.
  20. Goufo E.F.D., Ravichandran C., Birajdar G.A., Self-similarity techniques for chaotic attractors with many scrolls using step series switching, Mathematical Modelling and Analysis, 26(4), 591-611, 2021.
  21. Veeresha P., ˙Ilhan E., Baskonus H.M., Fractional approach for analysis of the model describing wind-influenced projectile motion, Physica Scripta, 96(7), 075209, 2021.
  22. Yao S.W., ˙Ilhan E., Veeresha P., Baskonus H.M., A powerful iterative approach for quintic complex Ginzburg-Landau equation within the frame of fractional operator, Fractals, 29(5), 2140023, 2021.
  23. Veeresha P., Baskonus H.M., Gao W., Strong interacting internal waves in rotating ocean: novel fractional approach, Axioms, 10(2), 123, 2021.
  24. Andrews G.E., Askey R., Roy R., Special functions, Cambridge University Press, Cambridge, 2004.
  25. Kilbas A.A., Srivastava H.M., Trujillo J.J., Theory and applications of fractional differential equations, 204, Elsevier, 2006.
  26. Zill D.G., Shanahan P.D., A first course in complex analysis with applications, Jones & Bartlett Learning, 2009.
Language: English
Page range: 45 - 66
Submitted on: Mar 31, 2023
Accepted on: May 17, 2023
Published on: Jun 9, 2023
Published by: Harran University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2023 Enes Ata, I. Onur Kıymaz, published by Harran University
This work is licensed under the Creative Commons Attribution 4.0 License.