Have a personal or library account? Click to login
A Semi-Supervised Machine Learning Approach to Define Pressing Roles in Football Cover

A Semi-Supervised Machine Learning Approach to Define Pressing Roles in Football

Open Access
|Dec 2025

References

  1. Aalbers, B., & Van Haaren, J. (2019). Distinguishing between roles of footballplayers in play-by-play match event data. In U. Brefeld, J. Davis,J. V. Haaren, & A. Zimmermann (Eds.), Machine learning and data miningfor sports analytics MLSA 2018. Lecture notes in computer science (Vol.11330, pp. 31–41). Springer. https://link.springer.com/chapter/10.1007/978-3-030-17274-9_3
  2. Andrienko, G L, Andrienko, N V, Budziak, G, Dykes, J, Fuchs, G, von Landesberger, T, & Weber, H (2017). Visual analysis of pressure in football. Data Mining and Knowledge Discovery, 31, 1793–1839, https://doi.org/10.1007/s10618-017-0513-2
  3. Bialkowski, A, Lucey, P, Carr, P, Yue, Y, Sridharan, S & Matthews, I (2014). “Large-Scale Analysis of Soccer Matches Using Spatiotemporal Tracking Data,” 2014 IEEE International Conference on Data Mining, Shenzhen, China, 2014, pp. 725–730, https://doi.org/10.1109/ICDM.2014.133
  4. Becht, E, McInnes, L & Healy, J (2019). Dimensionality reduction for visualizing single-cell data using UMAP. Nat Biotechnol 37, 38–44 (2019). https://doi.org/10.1038/nbt.4314
  5. Carrilho, D, Santos Couceiro, M, Brito, J, Figueiredo, P, Lopes, R J & Araújo, D (2020). Using Optical Tracking System Data to Measure Team Synergic Behavior: Synchronization of Player-Ball-Goal Angles in a Football Match. Sensors. 20(17):4990. https://doi.org/10.3390/s20174990
  6. Charrad, M, Ghazzali, N, Boiteau, V & Niknafs, A (2014). NbClust: An R Package for Determining the Relevant Number of Clusters in a Data Set. Journal of Statistical Software, 61(6), 1–36. http://www.jstatsoft.org/v61/i06
  7. Cintia, P., Giannotti, F., Pappalardo, L., et al. (2015) The harsh rule of the goals: data-driven performance indicators for football teams. In: Proceedings of the 2015 IEEE international conference on data science and advanced analytics, DSAA, Paris, France, 19–21 October 2015.
  8. Closing down: How defensive pressure impacts shots. (2022). Available at: https://statsbomb.com/2018/09/closing-down-how-defensive-pressure-impacts-shots/ (Accessed: 21 April 2022).
  9. Collet, C. (2013). The possession game? A comparative analysis of ball retention and team success in European and international football, 2007–2010. Journal of Sports Sciences, 31(2), 123–136. https://doi.org/10.1080/02640414.2012.727455
  10. Diaz-Papkovich, A, Anderson-Trocmé, L & Gravel, S (2021). A review of UMAP in population genetics. J Hum Genet 66, 85–91. https://doi.org/10.1038/s10038-020-00851-4
  11. Ensum, J, Williams, A, & Grant, A (2000). Analysis of attacking set plays in euro 2000. Masters, Universidade do Porto, 4, 36–39.
  12. García-Aliaga, A., Marquina, M., Coterón, J., Rodríguez-González, A., & Luengo-Sánchez, S. (2021). In-game behaviour analysis of football players using machine learning techniques based on player statistics. International Journal of Sports Science & Coaching, 16(1), 148–157. https://doi.org/10.1177/1747954120959762
  13. García-Aliaga, A., Marquina Nieto, M., Coterón, J., Rodríguez-González, A., Gil Ares, J., & Refoyo Román, I. (2023). A Longitudinal Study on the Evolution of the Four Main Football Leagues Using Artificial Intelligence: Analysis of the Differences in English Premier League Teams. Research Quarterly for Exercise and Sport, 94(2), 529–537. https://doi.org/10.1080/02701367.2021.2019661
  14. Głowania, S., Kozak, J., Juszczuk, P. (2023) Dimensionality reduction for real sports data from the German Bundesliga and English Premier League. Procedia Computer Science, 225 (4334–4343). https://doi.org/10.1016/j.procs.2023.10.430
  15. Herold, M, Kempe, M, Bauer, P, & Meyer, T (2021). Attacking key performance indicators in soccer: Current practice and perceptions from the elite to youth academy level. Sports Science and Medicine, 158–169, https://doi.org/10.52082/jssm.2021.158
  16. Hewitt, A, Greenham, G, & Norton, K (2016). Game style in soccer: what is it and can we quantify it? International Journal of Performance Analysis in Sport, 16 (1), 355–372. Available at: https://doi.org/10.1080/24748668.2016.11868892
  17. Imburgio, M & Goldberg, S (2020). Introducing DAVIES: A Framework for Identifying Talent Across the Globe. Available at: Introducing DAVIES: A framework for Identifying Talent Across the Globe — American Soccer Analysis (Accessed: 19 June 2023)
  18. Introducing Possession-Adjusted Stats (2014). Available at: https://statsbomb.com/articles/soccer/introducing-possession-adjusted-player-stats/. (Accessed: 02 May 2024)
  19. Kawasaki, T., Sakaue, K., Matsubara, R., & Ishizaki, S. (2019). Football pass network based on the measurement of player position by using network theory and clustering. International Journal of Performance Analysis in Sport, 19(3), 381–392. https://doi.org/10.1080/24748668.2019.1611292
  20. Kim, H, Kim, B, Chung, D, Yoon, J, & Ko, SK (2022). SoccerCPD: Formation and Role Change-Point Detection in Soccer Matches Using Spatiotemporal Tracking Data. arXiv preprint arXiv:2206.10926, arxiv.org, https://arxiv.org/abs/2206.10926
  21. Lago-Penas, C, & Dellal, A (2010). Ball possession strategies in elite soccer according to the evolution of the match-score. Journal of human kinetics, 25, 93–100, https://doi.org/10.2478/v10078-010-0036-z
  22. Li, Y, Zong, S, Shen, Y, Pu, Z, Gómez, M Á, & Cui, Y. (2022). Characterizing player’s playing styles based on player vectors for each playing position in the Chinese Football Super League. Journal of Sports Sciences, 40(14), 1629–1640. https://doi.org/10.1080/02640414.2022.2096771
  23. Lopes, A M, Tenreiro Machado, J A. (2021). Uniform Manifold Approximation and Projection Analysis of Soccer Players. Entropy 23, no. 7: 793. https://doi.org/10.3390/e23070793
  24. Lopez-Valenciano, A, Garcia-Gómez, J. A, López-Del Campo, R., Resta, R., Moreno-Perez, V, Blanco-Pita, H, ... Del Coso, J. (2021). Association between offensive and defensive playing style variables and ranking position in a national football league. Journal of Sports Sciences, 40(1), 50–58. https://doi.org/10.1080/02640414.2021.1976488
  25. Low, B, Coutinho, D, Gonçalves, B. et al. A Systematic Review of Collective Tactical Behaviours in Football Using Positional Data. (2020) Sports Med 50, 343–385. https://doi.org/10.1007/s40279-019-01194-7
  26. Lundberg, S & Lee, S (2017). “A unified approach to interpreting model predictions,” in Advances in Neural Information Processing Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds. Curran Associates, Inc., pp. 4765–4774, https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
  27. Maaten Lvd & Hinton G (2008). Visualizing Data using t-SNE. J Mach Learn Res, 9 (86), pp. 2579–2605. http://jmlr.org/papers/v9/vandermaaten08a.html
  28. Mazurek, J. (2018). Which football player bears most resemblance to Messi? A statistical analysis. arXiv preprint. https://arxiv.org/abs/1802.00967
  29. McInnes L, Healy J, Melville J. UMAP: uniform manifold approximation and projection for dimension reduction. arXiv 2018. http://arxiv.org/abs/1802.03426
  30. Meerhoff, L A, Goes, F R, De Leeuw, A & Knobbe, A (2019). Exploring Successful Team Tactics in Soccer Tracking Data. In: Cellier, P., Driessens, K. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2019. Communications in Computer and Information Science, vol 1168. Springer, Cham. https://doi.org/10.1007/978-3-030-43887-6_18
  31. Merckx, S, Robberechts, P, Euvrard, Y, & Davis, J (2021). Measuring the effectiveness of pressing in soccer. Proceedings of the Workshop on Machine Learning and Data Mining for Sports Analytics, Virtual. Vol. 13.
  32. Narizuka, T, Yamazaki, Y. Clustering algorithm for formations in football games. Sci Rep 9, 13172 (2019). https://doi.org/10.1038/s41598-019-48623-1
  33. Oliveira, J. G. (2004). Specific knowledge in football: contributions to the definition of a dynamic array of the teaching-learning training game. Masters, Universidade do Porto.
  34. Peters, A J, Parmar, N, Davies, M, Reeves, M, Sormaz, M, & James, N. (2024). Expected Pass Turnovers (xPT) - a model to analyse turnovers from passing events in football. Journal of Sports Sciences, 42(11), 1002–1010. https://doi.org/10.1080/02640414.2024.2379697
  35. Peters, A, Parmar, N, Davies, M, & James, N. (2025). A rule-based approach to classify counterpressing – analysis of its risks and relationship with rest defence. International Journal of Performance Analysis in Sport, 1–17. https://doi.org/10.1080/24748668.2025.2473799
  36. Ramos, S, Duarte, J, Duarte & Vale, F (2015). A data-mining based methodology to support MV electricity custormers’ characterization, Energy Build. 91 16–25.
  37. Statsbomb 360 - see how we’re changing the game. (2022). Available at: https://statsbomb.com/360-data/ (Accessed: 21 April 2022).
  38. Trainor, C (2014). Defensive Metrics: Measuring the Intensity of a High Press, http://statsbomb.com/2014/07/defensive-metrics-measuring-the-intensity-of-a-high-press/. (Accessed: 20 February 2022).
Language: English
Page range: 62 - 79
Published on: Dec 25, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Andrew Peters, Nimai Parmar, Michael Davies, Nic James, published by International Association of Computer Science in Sport
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.