References
- Arsal, G., Eccles, D. W., & Ericsson, K. A. (2016). Cognitive mediation of putting: Use of a think-aloud measure and implications for studies of golf-putting in the laboratory. Psychology of Sport and Exercise, 27, 18–27.
https://doi.org/10.1016/j.psychsport.2016.07.008 - Bartlett, R., Wheat, J., & Robins, M. (2007). Is movement variability important for sports biomechanists?. Sports Biomechanics, 6(2), 224–243.
https://doi.org/10.1080/14763140701322994 - Bosch, S., Shoaib, M., Geerlings, S., Buit, L., Meratnia, N., & Havinga, P. (2015). Analysis of indoor rowing motion using wearable inertial sensors. Proceedings of the 10th EAI International Conference on Body Area Networks, 233–239.
http://dx.doi.org/10.4108/eai.28-9-2015.2261465 - Bunker, R., & Susnjak, T. (2022). The application of machine learning techniques for predicting match results in team sport: A review. Journal of Artificial Intelligence Research, 73, 1285–1322.
https://doi.org/10.1613/jair.1.13509 - Chen, C. C., Lin, C. S., Chen, Y. T., Chen, W. H., Chen, C. H., & Chen, I. C. (2023). Intelligent performance evaluation in rowing sport using a graph-matching network. Journal of Imaging, 9(9), 181.
https://doi.org/10.3390/jimaging9090181 - Cho, K., Van Merriënboer, B., Bahdanau, D., & Bengio, Y. (2014). On the properties of neural machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259.
https://doi.org/10.48550/arXiv.1409.1259 - Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555.
https://doi.org/10.48550/arXiv.1412.3555 - Cordo, P. J., & Gurfinkel, V. S. (2004). Motor coordination can be fully understood only by studying complex movements. In Progress in Brain Research (Vol. 143, pp. 29–38). Elsevier.
https://doi.org/10.1016/S0079-6123(03)43003-3 - Cust, E. E., Sweeting, A. J., Ball, K., & Robertson, S. (2019). Machine and deep learning for sport-specific movement recognition: A systematic review of model development and performance. Journal of Sports Sciences, 37(5), 568–600.
https://doi.org/10.1080/02640414.2018.1521769 - Herrebrøden, H., Jensenius, A. R., Espeseth, T., Bishop, L., & Vuoskoski, J. K. (2023). Cognitive load causes kinematic changes in both elite and non-elite rowers. Human Movement Science, 90, 103113.
https://doi.org/10.1016/j.humov.2023.103113 - Horvat, T., & Job, J. (2020). The use of machine learning in sport outcome prediction: A review. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 10(5), e1380.
https://doi.org/10.1002/widm.1380 - Kleshnev, V. (2005). Comparison of on-water rowing with its simulation on Concept2 and Rowperfect machines. International Symposium on Biomechanics in Sports, Conference Proceedings Archive, 23.
https://ojs.ub.uni-konstanz.de/cpa/article/view/853 - Knudson, D. (1999). Validity and reliability of visual ratings of the vertical jump. Perceptual and Motor Skills, 89(2), 642–648.
https://doi.org/10.2466/pms.1999.89.2.642 - Lorenz D. S., Reiman M. P., Lehecka B. J., Naylor A. (2013). What performance characteristics determine elite versus nonelite athletes in the same sport? Sports Health, 5(6), 542–547.
https://doi.org/10.1177/1941738113479763 - Rico-González, M., Pino-Ortega, J., Méndez, A., Clemente, F., & Baca, A. (2023). Machine learning application in soccer: a systematic review. Biology of Sport, 40(1), 249–263.
https://doi.org/10.5114/biolsport.2023.112970 - Rindal, O. M. H., Seeberg, T. M., Tjønnås, J., Haugnes, P., & Sandbakk, Ø. (2017). Automatic classification of sub-techniques in classical cross-country skiing using a machine learning algorithm on micro-sensor data. Sensors, 18(1), 75.
https://doi.org/10.3390/s18010075 - Ross, G. B., Dowling, B., Troje, N. F., Fischer, S. L., & Graham, R. B. (2020). Classifying elite from novice athletes using simulated wearable sensor data. Frontiers in Bioengineering and Biotechnology, 8, 814.
https://doi.org/10.3389/fbioe.2020.00814 - Smith, R. M., & Loschner, C. (2002). Biomechanics feedback for rowing. Journal of Sports Sciences, 20(10), 783–791.
https://doi.org/10.1080/026404102320675639 - Soper, C., & Hume, P. A. (2004). Towards an ideal rowing technique for performance. Sports Medicine, pp. 825–848.
https://doi.org/10.2165/00007256-200434120-00003 - Ste-Marie, D. M., Lelievre, N., & St. Germain, L. (2020). Revisiting the applied model for the use of observation: a review of articles spanning 2011–2018. Research Quarterly for Exercise and Sport, 91(4), 594–617.
https://doi.org/10.1080/02701367.2019.1693489 - Van Eetvelde, H., Mendonça, L. D., Ley, C., Seil, R., & Tischer, T. (2021). Machine learning methods in sport injury prediction and prevention: a systematic review. Journal of Experimental Orthopaedics, 8, 1–15.
https://doi.org/10.1186/s40634-021-00346-x - Williams, A. M., & Ericsson, K. A. (2005). Perceptual-cognitive expertise in sport: Some considerations when applying the expert performance approach. Human Movement Science, 24(3), 283–307.
https://doi.org/10.1016/j.humov.2005.06.002 - Wood, D., Reid, M., Elliot, B., Alderson, J., & Mian, A. (2023). The expert eye? An inter-rater comparison of elite tennis serve kinematics and performance. Journal of Sports Sciences, 41(19), 1779–1786.
https://doi.org/10.1080/02640414.2023.2298102