Have a personal or library account? Click to login
Can machine learning distinguish between elite and non-elite rowers? Cover

References

  1. Arsal, G., Eccles, D. W., & Ericsson, K. A. (2016). Cognitive mediation of putting: Use of a think-aloud measure and implications for studies of golf-putting in the laboratory. Psychology of Sport and Exercise, 27, 18–27. https://doi.org/10.1016/j.psychsport.2016.07.008
  2. Bartlett, R., Wheat, J., & Robins, M. (2007). Is movement variability important for sports biomechanists?. Sports Biomechanics, 6(2), 224–243. https://doi.org/10.1080/14763140701322994
  3. Bosch, S., Shoaib, M., Geerlings, S., Buit, L., Meratnia, N., & Havinga, P. (2015). Analysis of indoor rowing motion using wearable inertial sensors. Proceedings of the 10th EAI International Conference on Body Area Networks, 233–239. http://dx.doi.org/10.4108/eai.28-9-2015.2261465
  4. Bunker, R., & Susnjak, T. (2022). The application of machine learning techniques for predicting match results in team sport: A review. Journal of Artificial Intelligence Research, 73, 1285–1322. https://doi.org/10.1613/jair.1.13509
  5. Chen, C. C., Lin, C. S., Chen, Y. T., Chen, W. H., Chen, C. H., & Chen, I. C. (2023). Intelligent performance evaluation in rowing sport using a graph-matching network. Journal of Imaging, 9(9), 181. https://doi.org/10.3390/jimaging9090181
  6. Cho, K., Van Merriënboer, B., Bahdanau, D., & Bengio, Y. (2014). On the properties of neural machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259. https://doi.org/10.48550/arXiv.1409.1259
  7. Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555. https://doi.org/10.48550/arXiv.1412.3555
  8. Cordo, P. J., & Gurfinkel, V. S. (2004). Motor coordination can be fully understood only by studying complex movements. In Progress in Brain Research (Vol. 143, pp. 29–38). Elsevier. https://doi.org/10.1016/S0079-6123(03)43003-3
  9. Cust, E. E., Sweeting, A. J., Ball, K., & Robertson, S. (2019). Machine and deep learning for sport-specific movement recognition: A systematic review of model development and performance. Journal of Sports Sciences, 37(5), 568–600. https://doi.org/10.1080/02640414.2018.1521769
  10. Herrebrøden, H., Jensenius, A. R., Espeseth, T., Bishop, L., & Vuoskoski, J. K. (2023). Cognitive load causes kinematic changes in both elite and non-elite rowers. Human Movement Science, 90, 103113. https://doi.org/10.1016/j.humov.2023.103113
  11. Horvat, T., & Job, J. (2020). The use of machine learning in sport outcome prediction: A review. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 10(5), e1380. https://doi.org/10.1002/widm.1380
  12. Kleshnev, V. (2005). Comparison of on-water rowing with its simulation on Concept2 and Rowperfect machines. International Symposium on Biomechanics in Sports, Conference Proceedings Archive, 23. https://ojs.ub.uni-konstanz.de/cpa/article/view/853
  13. Knudson, D. (1999). Validity and reliability of visual ratings of the vertical jump. Perceptual and Motor Skills, 89(2), 642–648. https://doi.org/10.2466/pms.1999.89.2.642
  14. Lorenz D. S., Reiman M. P., Lehecka B. J., Naylor A. (2013). What performance characteristics determine elite versus nonelite athletes in the same sport? Sports Health, 5(6), 542–547. https://doi.org/10.1177/1941738113479763
  15. Rico-González, M., Pino-Ortega, J., Méndez, A., Clemente, F., & Baca, A. (2023). Machine learning application in soccer: a systematic review. Biology of Sport, 40(1), 249–263. https://doi.org/10.5114/biolsport.2023.112970
  16. Rindal, O. M. H., Seeberg, T. M., Tjønnås, J., Haugnes, P., & Sandbakk, Ø. (2017). Automatic classification of sub-techniques in classical cross-country skiing using a machine learning algorithm on micro-sensor data. Sensors, 18(1), 75. https://doi.org/10.3390/s18010075
  17. Ross, G. B., Dowling, B., Troje, N. F., Fischer, S. L., & Graham, R. B. (2020). Classifying elite from novice athletes using simulated wearable sensor data. Frontiers in Bioengineering and Biotechnology, 8, 814. https://doi.org/10.3389/fbioe.2020.00814
  18. Smith, R. M., & Loschner, C. (2002). Biomechanics feedback for rowing. Journal of Sports Sciences, 20(10), 783–791. https://doi.org/10.1080/026404102320675639
  19. Soper, C., & Hume, P. A. (2004). Towards an ideal rowing technique for performance. Sports Medicine, pp. 825–848. https://doi.org/10.2165/00007256-200434120-00003
  20. Ste-Marie, D. M., Lelievre, N., & St. Germain, L. (2020). Revisiting the applied model for the use of observation: a review of articles spanning 2011–2018. Research Quarterly for Exercise and Sport, 91(4), 594–617. https://doi.org/10.1080/02701367.2019.1693489
  21. Van Eetvelde, H., Mendonça, L. D., Ley, C., Seil, R., & Tischer, T. (2021). Machine learning methods in sport injury prediction and prevention: a systematic review. Journal of Experimental Orthopaedics, 8, 1–15. https://doi.org/10.1186/s40634-021-00346-x
  22. Williams, A. M., & Ericsson, K. A. (2005). Perceptual-cognitive expertise in sport: Some considerations when applying the expert performance approach. Human Movement Science, 24(3), 283–307. https://doi.org/10.1016/j.humov.2005.06.002
  23. Wood, D., Reid, M., Elliot, B., Alderson, J., & Mian, A. (2023). The expert eye? An inter-rater comparison of elite tennis serve kinematics and performance. Journal of Sports Sciences, 41(19), 1779–1786. https://doi.org/10.1080/02640414.2023.2298102
Language: English
Page range: 118 - 132
Published on: May 1, 2025
Published by: International Association of Computer Science in Sport
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Kristine Fjellkårstad Orten, Sander Elias Magnussen Helgesen, Bihui Chen, Adel Baselizadeh, Jim Torresen, Henrik Herrebrøden, published by International Association of Computer Science in Sport
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.