References
- Badiella, L., Puig, P., Lago-Peñas, C., & Casals, M. (2023). Influence of Red and Yellow cards on team performance in elite soccer. Annals of Operations Research, 325(1), 149–165. https://doi.org/10.1007/s10479-022-04733-0
- Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01
- Bonn, K. (2023, June 5). Champions League prize money breakdown 2022/2023: How much do the UCL winners get from UEFA? | Sporting News United Kingdom. Sportingnews.Com. https://www.sportingnews.com/uk/football/news/champions-league-prize-money-2022-2023-ucl-winners-uefa/axbbtipavsvy1howxwj6vanp
- Bradley, P. S., Lago-Peñas, C., Rey, E., & Sampaio, J. (2014). The influence of situational variables on ball possession in the English Premier League. Journal of Sports Sciences, 32(20), 1867-1873. https://doi.org/10.1080/02640414.2014.887850
- Brinkjans, D., Memmert, D., Imkamp, J., & Perl, J. (2022). Success-Score in Professional Soccer - Validation of a Dynamic Key Performance Indicator Combining Space Control and Ball Control within Goalscoring Opportunities. International Journal of Computer Science in Sport, 21(2), 32–42. https://doi.org/10.2478/ijcss-2022-0009
- Brinkjans, D., Memmert, D., Paul, Y., & Perl, J. (2023). Success-Score in Professional Soccer - Is there a sweet spot in the analysis of space and ball control? International Journal of Computer Science in Sport, 22(2), 77–97. https://doi.org/10.2478/ijcss-2023-0013
- Brown, V. A. (2021). An Introduction to Linear Mixed-Effects Modeling in R. Advances in Methods and Practices in Psychological Science, 4(1), 251524592096035. https://doi.org/10.1177/2515245920960351
- Caetano, F. G., Barbon Junior, S., Torres, R. da S., Cunha, S. A., Ruffino, P. R. C., Martins, L. E. B., & Moura, F. A. (2021). Football player dominant region determined by a novel model based on instantaneous kinematics variables. Scientific Reports, 11(1), 18209. https://doi.org/10.1038/s41598-021-97537-4
- Caicedo-Parada, S., Lago-Penas, C., & Ortega-Toro, E. (2020). Passing Networks and Tactical Action in Football: A Systematic Review. International Journal of Environmental Research and Public Health, 17(18), 6649. https://doi.org/10.3390/ijerph17186649
- Casal, C. A., Anguera, M. T., Maneiro, R., & Losada, J. L. (2019). Possession in Football: More Than a Quantitative Aspect - A Mixed Method Study. Frontiers in Psychology, 10, 501. https://doi.org/10.3389/fpsyg.2019.00501
- Collet, C. (2013). The possession game? A comparative analysis of ball retention and team success in European and international football, 2007-2010. Journal of Sports Sciences, 31(2), 123-136. https://doi.org/10.1080/02640414.2012.727455
- Coutts, A. J. (2014). Evolution of football match analysis research. Journal of Sports Sciences, 32(20), 1829-1830. https://doi.org/10.1080/02640414.2014.985450
- Enders, C. K., & Tofighi, D. (2007). Centering predictor variables in cross-sectional multilevel models: A new look at an old issue. Psychological Methods, 12(2), 121-138. https://doi.org/10.1037/1082-989X.12.2.121
- Faraway, J. J. (2006). Extending the linear model with R: Generalized linear, mixed effects and nonparametric regression models. Chapman & Hall/CRC.
- FBref. (2023a, July 14). All About FBref.com. FBref.Com. https://fbref.com/en/about/
- FBref. (2023b, July 14). Football Statistics and History. FBref.Com. https://fbref.com/en/
- Fernandez, J., & Bornn, L. (2018). Wide Open Spaces: A statistical technique for measuring space creation in professional soccer.
- Fernández, J., Bornn, L., & Cervone, D. (2021). A framework for the fine-grained evaluation of the instantaneous expected value of soccer possessions. Machine Learning, 110(6), 1389—1427. https://doi.org/10.1007/s10994-021-05989-6
- Fernández, J., Bornn, L., & Cervone, D. (2019). Decomposing the Immeasurable Sport: A deep learning expected possession value framework for soccer. MIT Sloan Sports Analytics Conference, Boston.
- Fernandez-Navarro, J., Fradua, L., Zubillaga, A., & McRobert, A. P. (2019). Evaluating the effectiveness of styles of play in elite soccer. International Journal of Sports Science & Coaching, 14(4), 514-527. https://doi.org/10.1177/1747954119855361
- Field, A. P., Miles, J., & Field, Z. (2012). Discovering statistics using R. Sage. http://catalog.hathitrust.org/api/volumes/oclc/760970657.html
- Fujimura, A., & Sugihara, K. (2005). Geometric analysis and quantitative evaluation of sport teamwork. Systems and Computers in Japan, 36(6), 49-58. https://doi.org/10.1002/scj.20254
- Goes, F. R., Meerhoff, L. A., Bueno, M. J. O., Rodrigues, D. M., Moura, F. A., Brink, M. S., Elferink-Gemser, M. T., Knobbe, A. J., Cunha, S. A., Torres, R. S., & Lemmink, K. A. P. M. (2021). Unlocking the potential of big data to support tactical performance analysis in professional soccer: A systematic review. European Journal of Sport Science, 21(4), 481–96. https://doi.org/10.1080/17461391.2020.1747552
- Gonzalez Rodenas, J., Aranda Malaves, R., Tudela Desantes, A., Sanz Ramirez, E., Crespo Hervas, J., & Aranda Malaves, R. (2020). Past, present and future of goal scoring analysis in professional soccer (Pasado, presente y futuro del analisis de goles en el futbol profesional). Retos, 37, 774-785. https://doi.org/10.47197/retos.v37i37.69837
- González Rodenas, J. G., Malavés, R. A., Desantes, A. T., Ramirez, E. S., Hervás, J. C., & Malavés, R. A. (2020). Past, present and future of goal scoring analysis in professional soccer. Retos: Nuevas Tendencias En Educacion Fisica, Deporte y Recreacion, 37, 774-785.
- González-Ródenas, J., López-Bondia, I., Aranda-Malavés, R., Tudela Desantes, A., Sanz-Ramirez, E., & Aranda Malaves, R. (2019). Technical, tactical and spatial indicators related to goal scoring in European elite soccer. Journal of Human Sport and Exercise, 15(1). https://doi.org/10.14198/jhse.2020.151.17
- Gudmundsson, J., & Horton, M. (2018). Spatio-Temporal Analysis of Team Sports. ACM Computing Surveys, 50(2), 1-34. https://doi.org/10.1145/3054132
- Harrison, X. A., Donaldson, L., Correa-Cano, M. E., Evans, J., Fisher, D. N., Goodwin, C. E. D., Robinson, B. S., Hodgson, D. J., & Inger, R. (2018). A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ, 6, e4794. https://doi.org/10.7717/peerj.4794
- Herold, M., Kempe, M., Bauer, P., & Meyer, T. (2021). Attacking Key Performance Indicators in Soccer: Current Practice and Perceptions from the Elite to Youth Academy Level. Journal of Sports Science and Medicine, 158-169. https://doi.org/10.52082/jssm.2021.158
- Hewitt, A., Greenham, G., & Norton, K. (2016). Game style in soccer: What is it and can we quantify it? International Journal of Performance Analysis in Sport, 16(1), 355-372. https://doi.org/10.1080/24748668.2016.11868892
- Hoffman, L., & Walters, R. W. (2022). Catching Up on Multilevel Modeling. Annual Review of Psychology, 73(1), 659-689. https://doi.org/10.1146/annurev-psych-020821-103525
- Horvat, T., & Job, J. (2020). The use of machine learning in sport outcome prediction: A review. WIREs Data Mining and Knowledge Discovery, 10(5). https://doi.org/10.1002/widm.1380
- Hughes, M., & Franks, I. (2005). Analysis of passing sequences, shots and goals in soccer. Journal of Sports Sciences, 23(5), 509-514. https://doi.org/10.1080/02640410410001716779
- James, N. (2006). Notational analysis in soccer: Past, present and future. International Journal of Performance Analysis in Sport, 6(2), 67-81. https://doi.org/10.1080/24748668.2006.11868373
- Jamil, M., Liu, H., Phatak, A., & Memmert, D. (2021). An investigation identifying which key performance indicators influence the chances of promotion to the elite leagues in professional European football. International Journal of Performance Analysis in Sport, 21(4), 641-650. https://doi.org/10.1080/24748668.2021.1933845
- Jamil, M., Phatak, A., Mehta, S., Beato, M., Memmert, D., & Connor, M. (2021). Using multiple machine learning algorithms to classify elite and sub-elite goalkeepers in professional men’s football. Scientific Reports, 11(1), 22703. https://doi.org/10.1038/s41598-021-01187-5
- Jones, P. D., James, N., & Mellalieu, S. D. (2004). Possession as a performance indicator in soccer. International Journal of Performance Analysis in Sport, 4(1), 98-102. https://doi.org/10.1080/24748668.2004.11868295
- Kempe, M., Vogelbein, M., Memmert, D., & Nopp, S. (2014). Possession vs. Direct Play: Evaluating Tactical Behavior in Elite Soccer. International Journal of Sports Science, 4(6A), 35-41. http://dx.doi.org/10.5923/s.sports.201401.05
- Kievit, R. A., Frankenhuis, W. E., Waldorp, L. J., & Borsboom, D. (2013). Simpson’s paradox in psychological science: A practical guide. Frontiers in Psychology, 4. https://doi.org/10.3389/fpsyg.2013.00513
- Kim, S. (2004). Voronoi Analysis of a Soccer Game. Nonlinear Analysis: Modelling and Control, 9(3), 233-240. https://doi.org/10.15388/NA.2004.93.15154
- Kirkwood, B. R., Sterne, J. A. C., & Kirkwood, B. R. (2003). Essential medical statistics (2nd ed). Blackwell Science.
- Koning, R. H. (2017). Rating of Team Abilities in Soccer. In J. Albert, Handbook of statistical methods and analyses in sports (Vol. 1). CRC Press, Taylor & Francis.
- Lago, C. (2007). Are winners different from losers? Performance and chance in the FIFA World Cup Germany 2006. International Journal of Performance Analysis in Sport, 7(2), 36-47. https://doi.org/10.1080/24748668.2007.11868395
- Lago, C. (2009). The influence of match location, quality of opposition, and match status on possession strategies in professional association football. Journal of Sports Sciences, 27(13), 1463-1469. https://doi.org/10.1080/02640410903131681
- Lago-Ballesteros, J., & Lago-Penas, C. (2010). Performance in Team Sports: Identifying the Keys to Success in Soccer. Journal of Human Kinetics, 25(2010), 85-91. https://doi.org/10.2478/v10078-010-0035-0
- Ley, C., Wiele, T. V. D., & Eetvelde, H. V. (2019). Ranking soccer teams on the basis of their current strength: A comparison of maximum likelihood approaches. Statistical Modelling, 19(1), 55-73. https://doi.org/10.1177/1471082X18817650
- Liu, H., Gomez, M.-A., Lago-Penas, C., & Sampaio, J. (2015). Match statistics related to winning in the group stage of 2014 Brazil FIFA World Cup. Journal of Sports Sciences, 33(12), 1205-1213. https://doi.org/10.1080/02640414.2015.1022578
- Liu, H., Hopkins, W. G., & Gomez, M.-A. (2016). Modelling relationships between match events and match outcome in elite football. European Journal of Sport Science, 16(5), 516-525. https://doi.org/10.1080/17461391.2015.1042527
- Liu, H., Hopkins, W., Gomez, A. M., & Molinuevo, S. J. (2013). Inter-operator reliability of live football match statistics from OPTA Sportsdata. International Journal of Performance Analysis in Sport, 13(3), 803-821. https://doi.org/10.1080/24748668.2013.11868690
- Liu, H., Yi, Q., Gimenez, J.-V., Gomez, M.-A., & Lago-Penas, C. (2015). Performance profiles of football teams in the UEFA Champions League considering situational efficiency. International Journal of Performance Analysis in Sport, 15(1), 371-390. https://doi.org/10.1080/24748668.2015.11868799
- Lord, F., Pyne, D. B., Welvaert, M., & Mara, J. K. (2020). Methods of performance analysis in team invasion sports: A systematic review. Journal of Sports Sciences, 38(20), 23382349. https://doi.org/10.1080/02640414.2020.1785185
- Low, B., Coutinho, D., Gonçalves, B., Rein, R., Memmert, D., & Sampaio, J. (2020). A Systematic Review of Collective Tactical Behaviours in Football Using Positional Data. Sports Medicine, 50(2), 343-385. https://doi.org/10.1007/s40279-019-01194-7
- Lüdecke, D., Bartel, A., Schwemmer, C., Powell, C., Djalovski, A., & Titz, J. (2023). sjPlot: Data Visualization for Statistics in Social Science (2.8.14) [R Package]. https://cran.r-project.org/package=sjPlot
- Mackenzie, R., & Cushion, C. (2013). Performance analysis in football: A critical review and implications for future research. Journal of Sports Sciences, 31(6), 639-676. https://doi.org/10.1080/02640414.2012.746720
- Mao, L., Peng, Z., Liu, H., & Gomez, M.-A. (2016). Identifying keys to win in the Chinese professional soccer league. International Journal of Performance Analysis in Sport, 16(3), 935-947. https://doi.org/10.1080/24748668.2016.11868940
- Martens, F., Dick, U., & Brefeld, U. (2021). Space and Control in Soccer. Frontiers in Sports and Active Living, 3, 676179. https://doi.org/10.3389/fspor.2021.676179
- Memmert, (Ed.) (2024). Computer Science in Sport: Modeling, Simulation, Data Analysis and Visualization of Sports-Related Data. Berlin: Springer-Verlag.
- Memmert, D. (Ed.) (2021). Match Analysis. Abingdon: Routledge.
- Memmert, D., Lemmink, K. A. P. M., & Sampaio, J. (2017). Current Approaches to Tactical Performance Analyses in Soccer Using Position Data. Sports Medicine, 47(1), 1-10. https://doi.org/10.1007/s40279-016-0562-5
- Memmert, D., & Raabe, D. (2023). Data Analytics in Football. Positional Data Collection, Modelling and Analysis (3. Edition). Abingdon: Routledge.
- Michailidis, Y., Michailidis, C., & Primpa, E. (2013). Analysis of goals scored in European Championship 2012. Journal of Human Sport and Exercise, 8(2), 367-375. https://doi.org/10.4100/jhse.2012.82.05
- Nakanishi, R., Murakami, K., & Naruse, T. (2008). Dynamic Positioning Method Based on Dominant Region Diagram to Realize Successful Cooperative Play. In U. Visser, F. Ribeiro, T. Ohashi, & F. Dellaert (Eds.), RoboCup 2007: Robot Soccer World Cup XI (Vol. 5001, pp. 488–495). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-68847-1_52
- Nieto, S., Castellano, J., & Echeazarra, I. (2022). Description of collective behaviour in football according to the level of competence in representative tasks from positional data: Systematic review. International Journal of Sports Science & Coaching, 17(6), 1553— 1566. https://doi.org/10.1177/17479541221088640
- O’Connor-Simpson, M. (2022, June 4). Championship play-off final: How much is winning Premier League promotion decider worth? 90min.Com. https://www.90min.com/posts/championship-play-off-final-how-much-premier-league-promotion-decider-worth
- Perl, J., Grunz, A., & Memmert, D. (2013). Tactics Analysis in Soccer - An Advanced Approach. International Journal of Computer Science in Sport, 12(1), 33–44.
- Perl, J., & Memmert, D. (2011). Net-Based Game Analysis by Means of the Software Tool SOCCER. International Journal of Computer Science in Sport, 10(2), 77-84.
- Perl, J., & Memmert, D. (2017). A Pilot Study on Offensive Success in Soccer Based on Space and Ball Control - Key Performance Indicators and Key to Understand Game Dynamics. International Journal of Computer Science in Sport, 16(1), 65-75. https://doi.org/10.1515/ijcss-2017-0005
- Perl, J., & Memmert, D. (2018). Soccer: Process and interaction. In A. Baca & J. Perl, Modelling and Simulation in Sport and Exercise (pp. 73-94). Routledge.
- Phatak, A. A., Mehta, S., Wieland, F.-G., Jamil, M., Connor, M., Bassek, M., & Memmert, D. (2022). Context is key: Normalization as a novel approach to sport specific preprocessing of KPI’s for match analysis in soccer. Scientific Reports, 12(1), 1117. https://doi.org/10.1038/s41598-022-05089-y
- Pratas, J. M., Volossovitch, A., & Carita, A. I. (2018). Goal scoring in elite male football: A systematic review. Journal of Human Sport and Exercise, 13(1). https://doi.org/10.14198/jhse.2018.131.19
- Prematunga, R. K. (2012). Correlational analysis. Australian Critical Care, 25(3), 195-199. https://doi.org/10.10161j.aucc.2012.02.003
- R Core Team. (2022). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://.R-project.org/
- Raabe, D., Biermann, H., Bassek, M., Wohlan, M., Komitova, R., Rein, R., Groot, T. K., & Memmert, D. (2022). floodlight—A high-level, data-driven sports analytics framework. Journal of Open Source Software, 7(76), 4588. https://doi.org/10.21105/joss.04588
- Reep, C., & Benjamin, B. (1968). Skill and Chance in Association Football. Journal of the Royal Statistical Society. Series A (General), 131(4), 581. https://doi.org/10.2307/2343726
- Rein, R., & Brinkjans, D. (submitted). Count games not athletes: The problem of pseudoreplication in small-sided games research.
- Rein, R., & Memmert, D. (2016). Big data and tactical analysis in elite soccer: Future challenges and opportunities for sports science. SpringerPlus, 5(1), 1410. https://doi.org/10.1186/s40064-016-3108-2
- Rein, R., Raabe, D., & Memmert, D. (2017). “Which pass is better?” Novel approaches to assess passing effectiveness in elite soccer. Human Movement Science, 55, 172-181. https://doi.org/10.1016/j.humov.2017.07.010
- RStudio Team. (2022). RStudio: Integrated Development Environment for R [Computer software]. RStudio, PBC. http://www.rstudio.com/
- Rudd, S. (2011). A Framework for Tactical Analysis and Individual Offensive Production Assessment in Soccer Using Markov Chains. New England Symposium on Statistics in Sports. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/www.nessis.org/nessis11/rudd.pdf
- Ruiz-Ruiz, C., Fradua, L., Fernandez-Garcla, A., & Zubillaga, A. (2013). Analysis of entries into the penalty area as a performance indicator in soccer. European Journal of Sport Science, 13(3), 241-248. https://doi.org/10.1080/17461391.2011.606834
- Sarmento, H., Marcelino, R., Anguera, M. T., Campani£o, J., Matos, N., & LeitAo, J. C. (2014). Match analysis in football: A systematic review. Journal of Sports Sciences, 32(20), 1831-1843. https://doi.org/10.1080/02640414.2014.898852
- Singh, K. (2019). Introducing Expected Threat (xT). Karun.in/Blog. https://karun.in/blog/expected-threat.html
- Spearman, W., Basye, A., Dick, G., Hotovy, R., & Pop, P. (2017). Physics-Based Modeling of Pass Probabilities in Soccer. MIT Sloan Sports Analytics Conference.
- Taki, T., & Hasegawa, J. (2000). Visualization of dominant region in team games and its application to teamwork analysis. Proceedings Computer Graphics International 2000, 227-235. https://doi.org/10.1109/CGI.2000.852338
- Tenga, A., Holme, I., Ronglan, L. T., & Bahr, R. (2010). Effect of playing tactics on achieving score-box possessions in a random series of team possessions from Norwegian professional soccer matches. Journal of Sports Sciences, 28(3), 245-255. https://doi.org/10.1080/02640410903502766
- Tenga, A., Ronglan, L. T., & Bahr, R. (2010). Measuring the effectiveness of offensive match- play in professional soccer. European Journal of Sport Science, 10(4), 269-277. https://doi.org/10.1080/17461390903515170
- Tenga, A., & Sigmundstad, E. (2011). Characteristics of goal-scoring possessions in open play: Comparing the top, in-between and bottom teams from professional soccer league. International Journal of Performance Analysis in Sport, 11(3), 545-552. https://doi.org/10.1080/24748668.2011.11868572
- Van Rossum, G., & Drake, F. L. (2009). Python 3 Reference Manual. CreateSpace.
- Vilar, L., Araujo, D., Davids, K., & Bar-Yam, Y. (2013). Science of winning soccer: Emergent pattern-forming dynamics in association football. Journal of Systems Science and Complexity, 26(1), 73-84. https://doi.org/10.1007/s11424-013-2286-z
- Vogelbein, M., Nopp, S., & Hokelmann, A. (2014). Defensive transition in soccer - are prompt possession regains a measure of success? A quantitative analysis of German FuBball- Bundesliga 2010/2011. Journal of Sports Sciences, 32(11), 1076-1083. https://doi.org/10.1080/02640414.2013.879671
- Wright, C., Atkins, S., Polman, R., Jones, B., & Sargeson, L. (2011). Factors Associated with Goals and Goal Scoring Opportunities in Professional Soccer. International Journal of Performance Analysis in Sport, 11(3), 438-449. https://doi.org/10.1080/24748668.2011.11868563
- Wunderlich, F., & Memmert, D. (2018). The Betting Odds Rating System: Using soccer forecasts to forecast soccer. PLOS ONE, 13(6), e0198668. https://doi.org/10.1371/journal.pone.0198668
- Wunderlich, F., Seck, A., & Memmert, D. (2021). The influence of randomness on goals in football decreases over time. An empirical analysis of randomness involved in goal scoring in the English Premier League. Journal of Sports Sciences, 39(20), 2322-2337. https://doi.org/10.1080/02640414.2021.1930685
- Yang, G., Leicht, A. S., Lago, C., & Gómez, M.-Á. (2018). Key team physical and technical performance indicators indicative of team quality in the soccer Chinese super league. Research in Sports Medicine, 26(2), 158-167. https://doi.org/10.1080/15438627.2018.1431539
- Yi, Q., Gómez, M.-Á., Liu, H., & Sampaio, J. (2019). Variation of match statistics and football teams’ match performance in the group stageof the UEFA Champions League from 2010 to 2017. Kinesiology, 51(2), 170-181. https://doi.org/10.26582/k.51.2.4